@inproceedings{dinkar-etal-2020-importance,
title = "The importance of fillers for text representations of speech transcripts",
author = "Dinkar, Tanvi and
Colombo, Pierre and
Labeau, Matthieu and
Clavel, Chlo{\'e}",
editor = "Webber, Bonnie and
Cohn, Trevor and
He, Yulan and
Liu, Yang",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.emnlp-main.641/",
doi = "10.18653/v1/2020.emnlp-main.641",
pages = "7985--7993",
abstract = "While being an essential component of spoken language, fillers (e.g. {\textquotedblleft}um{\textquotedblright} or {\textquotedblleft}uh{\textquotedblright}) often remain overlooked in Spoken Language Understanding (SLU) tasks. We explore the possibility of representing them with deep contextualised embeddings, showing improvements on modelling spoken language and two downstream tasks {---} predicting a speaker`s stance and expressed confidence."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="dinkar-etal-2020-importance">
<titleInfo>
<title>The importance of fillers for text representations of speech transcripts</title>
</titleInfo>
<name type="personal">
<namePart type="given">Tanvi</namePart>
<namePart type="family">Dinkar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pierre</namePart>
<namePart type="family">Colombo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Matthieu</namePart>
<namePart type="family">Labeau</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chloé</namePart>
<namePart type="family">Clavel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Bonnie</namePart>
<namePart type="family">Webber</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Trevor</namePart>
<namePart type="family">Cohn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yulan</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>While being an essential component of spoken language, fillers (e.g. “um” or “uh”) often remain overlooked in Spoken Language Understanding (SLU) tasks. We explore the possibility of representing them with deep contextualised embeddings, showing improvements on modelling spoken language and two downstream tasks — predicting a speaker‘s stance and expressed confidence.</abstract>
<identifier type="citekey">dinkar-etal-2020-importance</identifier>
<identifier type="doi">10.18653/v1/2020.emnlp-main.641</identifier>
<location>
<url>https://aclanthology.org/2020.emnlp-main.641/</url>
</location>
<part>
<date>2020-11</date>
<extent unit="page">
<start>7985</start>
<end>7993</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T The importance of fillers for text representations of speech transcripts
%A Dinkar, Tanvi
%A Colombo, Pierre
%A Labeau, Matthieu
%A Clavel, Chloé
%Y Webber, Bonnie
%Y Cohn, Trevor
%Y He, Yulan
%Y Liu, Yang
%S Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)
%D 2020
%8 November
%I Association for Computational Linguistics
%C Online
%F dinkar-etal-2020-importance
%X While being an essential component of spoken language, fillers (e.g. “um” or “uh”) often remain overlooked in Spoken Language Understanding (SLU) tasks. We explore the possibility of representing them with deep contextualised embeddings, showing improvements on modelling spoken language and two downstream tasks — predicting a speaker‘s stance and expressed confidence.
%R 10.18653/v1/2020.emnlp-main.641
%U https://aclanthology.org/2020.emnlp-main.641/
%U https://doi.org/10.18653/v1/2020.emnlp-main.641
%P 7985-7993
Markdown (Informal)
[The importance of fillers for text representations of speech transcripts](https://aclanthology.org/2020.emnlp-main.641/) (Dinkar et al., EMNLP 2020)
ACL