@inproceedings{kober-etal-2020-aspectuality,
title = "Aspectuality Across Genre: A Distributional Semantics Approach",
author = "Kober, Thomas and
Alikhani, Malihe and
Stone, Matthew and
Steedman, Mark",
editor = "Scott, Donia and
Bel, Nuria and
Zong, Chengqing",
booktitle = "Proceedings of the 28th International Conference on Computational Linguistics",
month = dec,
year = "2020",
address = "Barcelona, Spain (Online)",
publisher = "International Committee on Computational Linguistics",
url = "https://aclanthology.org/2020.coling-main.401/",
doi = "10.18653/v1/2020.coling-main.401",
pages = "4546--4562",
abstract = "The interpretation of the lexical aspect of verbs in English plays a crucial role in tasks such as recognizing textual entailment and learning discourse-level inferences. We show that two elementary dimensions of aspectual class, states vs. events, and telic vs. atelic events, can be modelled effectively with distributional semantics. We find that a verb`s local context is most indicative of its aspectual class, and we demonstrate that closed class words tend to be stronger discriminating contexts than content words. Our approach outperforms previous work on three datasets. Further, we present a new dataset of human-human conversations annotated with lexical aspects and present experiments that show the correlation of telicity with genre and discourse goals."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kober-etal-2020-aspectuality">
<titleInfo>
<title>Aspectuality Across Genre: A Distributional Semantics Approach</title>
</titleInfo>
<name type="personal">
<namePart type="given">Thomas</namePart>
<namePart type="family">Kober</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Malihe</namePart>
<namePart type="family">Alikhani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Matthew</namePart>
<namePart type="family">Stone</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mark</namePart>
<namePart type="family">Steedman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 28th International Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Donia</namePart>
<namePart type="family">Scott</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nuria</namePart>
<namePart type="family">Bel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chengqing</namePart>
<namePart type="family">Zong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>International Committee on Computational Linguistics</publisher>
<place>
<placeTerm type="text">Barcelona, Spain (Online)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The interpretation of the lexical aspect of verbs in English plays a crucial role in tasks such as recognizing textual entailment and learning discourse-level inferences. We show that two elementary dimensions of aspectual class, states vs. events, and telic vs. atelic events, can be modelled effectively with distributional semantics. We find that a verb‘s local context is most indicative of its aspectual class, and we demonstrate that closed class words tend to be stronger discriminating contexts than content words. Our approach outperforms previous work on three datasets. Further, we present a new dataset of human-human conversations annotated with lexical aspects and present experiments that show the correlation of telicity with genre and discourse goals.</abstract>
<identifier type="citekey">kober-etal-2020-aspectuality</identifier>
<identifier type="doi">10.18653/v1/2020.coling-main.401</identifier>
<location>
<url>https://aclanthology.org/2020.coling-main.401/</url>
</location>
<part>
<date>2020-12</date>
<extent unit="page">
<start>4546</start>
<end>4562</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Aspectuality Across Genre: A Distributional Semantics Approach
%A Kober, Thomas
%A Alikhani, Malihe
%A Stone, Matthew
%A Steedman, Mark
%Y Scott, Donia
%Y Bel, Nuria
%Y Zong, Chengqing
%S Proceedings of the 28th International Conference on Computational Linguistics
%D 2020
%8 December
%I International Committee on Computational Linguistics
%C Barcelona, Spain (Online)
%F kober-etal-2020-aspectuality
%X The interpretation of the lexical aspect of verbs in English plays a crucial role in tasks such as recognizing textual entailment and learning discourse-level inferences. We show that two elementary dimensions of aspectual class, states vs. events, and telic vs. atelic events, can be modelled effectively with distributional semantics. We find that a verb‘s local context is most indicative of its aspectual class, and we demonstrate that closed class words tend to be stronger discriminating contexts than content words. Our approach outperforms previous work on three datasets. Further, we present a new dataset of human-human conversations annotated with lexical aspects and present experiments that show the correlation of telicity with genre and discourse goals.
%R 10.18653/v1/2020.coling-main.401
%U https://aclanthology.org/2020.coling-main.401/
%U https://doi.org/10.18653/v1/2020.coling-main.401
%P 4546-4562
Markdown (Informal)
[Aspectuality Across Genre: A Distributional Semantics Approach](https://aclanthology.org/2020.coling-main.401/) (Kober et al., COLING 2020)
ACL
- Thomas Kober, Malihe Alikhani, Matthew Stone, and Mark Steedman. 2020. Aspectuality Across Genre: A Distributional Semantics Approach. In Proceedings of the 28th International Conference on Computational Linguistics, pages 4546–4562, Barcelona, Spain (Online). International Committee on Computational Linguistics.