@inproceedings{gupta-etal-2020-conversational,
title = "Conversational Machine Comprehension: a Literature Review",
author = "Gupta, Somil and
Rawat, Bhanu Pratap Singh and
Yu, Hong",
editor = "Scott, Donia and
Bel, Nuria and
Zong, Chengqing",
booktitle = "Proceedings of the 28th International Conference on Computational Linguistics",
month = dec,
year = "2020",
address = "Barcelona, Spain (Online)",
publisher = "International Committee on Computational Linguistics",
url = "https://aclanthology.org/2020.coling-main.247/",
doi = "10.18653/v1/2020.coling-main.247",
pages = "2739--2753",
abstract = "Conversational Machine Comprehension (CMC), a research track in conversational AI, expects the machine to understand an open-domain natural language text and thereafter engage in a multi-turn conversation to answer questions related to the text. While most of the research in Machine Reading Comprehension (MRC) revolves around single-turn question answering (QA), multi-turn CMC has recently gained prominence, thanks to the advancement in natural language understanding via neural language models such as BERT and the introduction of large-scale conversational datasets such as CoQA and QuAC. The rise in interest has, however, led to a flurry of concurrent publications, each with a different yet structurally similar modeling approach and an inconsistent view of the surrounding literature. With the volume of model submissions to conversational datasets increasing every year, there exists a need to consolidate the scattered knowledge in this domain to streamline future research. This literature review attempts at providing a holistic overview of CMC with an emphasis on the common trends across recently published models, specifically in their approach to tackling conversational history. The review synthesizes a generic framework for CMC models while highlighting the differences in recent approaches and intends to serve as a compendium of CMC for future researchers."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="gupta-etal-2020-conversational">
<titleInfo>
<title>Conversational Machine Comprehension: a Literature Review</title>
</titleInfo>
<name type="personal">
<namePart type="given">Somil</namePart>
<namePart type="family">Gupta</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bhanu</namePart>
<namePart type="given">Pratap</namePart>
<namePart type="given">Singh</namePart>
<namePart type="family">Rawat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hong</namePart>
<namePart type="family">Yu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 28th International Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Donia</namePart>
<namePart type="family">Scott</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nuria</namePart>
<namePart type="family">Bel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chengqing</namePart>
<namePart type="family">Zong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>International Committee on Computational Linguistics</publisher>
<place>
<placeTerm type="text">Barcelona, Spain (Online)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Conversational Machine Comprehension (CMC), a research track in conversational AI, expects the machine to understand an open-domain natural language text and thereafter engage in a multi-turn conversation to answer questions related to the text. While most of the research in Machine Reading Comprehension (MRC) revolves around single-turn question answering (QA), multi-turn CMC has recently gained prominence, thanks to the advancement in natural language understanding via neural language models such as BERT and the introduction of large-scale conversational datasets such as CoQA and QuAC. The rise in interest has, however, led to a flurry of concurrent publications, each with a different yet structurally similar modeling approach and an inconsistent view of the surrounding literature. With the volume of model submissions to conversational datasets increasing every year, there exists a need to consolidate the scattered knowledge in this domain to streamline future research. This literature review attempts at providing a holistic overview of CMC with an emphasis on the common trends across recently published models, specifically in their approach to tackling conversational history. The review synthesizes a generic framework for CMC models while highlighting the differences in recent approaches and intends to serve as a compendium of CMC for future researchers.</abstract>
<identifier type="citekey">gupta-etal-2020-conversational</identifier>
<identifier type="doi">10.18653/v1/2020.coling-main.247</identifier>
<location>
<url>https://aclanthology.org/2020.coling-main.247/</url>
</location>
<part>
<date>2020-12</date>
<extent unit="page">
<start>2739</start>
<end>2753</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Conversational Machine Comprehension: a Literature Review
%A Gupta, Somil
%A Rawat, Bhanu Pratap Singh
%A Yu, Hong
%Y Scott, Donia
%Y Bel, Nuria
%Y Zong, Chengqing
%S Proceedings of the 28th International Conference on Computational Linguistics
%D 2020
%8 December
%I International Committee on Computational Linguistics
%C Barcelona, Spain (Online)
%F gupta-etal-2020-conversational
%X Conversational Machine Comprehension (CMC), a research track in conversational AI, expects the machine to understand an open-domain natural language text and thereafter engage in a multi-turn conversation to answer questions related to the text. While most of the research in Machine Reading Comprehension (MRC) revolves around single-turn question answering (QA), multi-turn CMC has recently gained prominence, thanks to the advancement in natural language understanding via neural language models such as BERT and the introduction of large-scale conversational datasets such as CoQA and QuAC. The rise in interest has, however, led to a flurry of concurrent publications, each with a different yet structurally similar modeling approach and an inconsistent view of the surrounding literature. With the volume of model submissions to conversational datasets increasing every year, there exists a need to consolidate the scattered knowledge in this domain to streamline future research. This literature review attempts at providing a holistic overview of CMC with an emphasis on the common trends across recently published models, specifically in their approach to tackling conversational history. The review synthesizes a generic framework for CMC models while highlighting the differences in recent approaches and intends to serve as a compendium of CMC for future researchers.
%R 10.18653/v1/2020.coling-main.247
%U https://aclanthology.org/2020.coling-main.247/
%U https://doi.org/10.18653/v1/2020.coling-main.247
%P 2739-2753
Markdown (Informal)
[Conversational Machine Comprehension: a Literature Review](https://aclanthology.org/2020.coling-main.247/) (Gupta et al., COLING 2020)
ACL
- Somil Gupta, Bhanu Pratap Singh Rawat, and Hong Yu. 2020. Conversational Machine Comprehension: a Literature Review. In Proceedings of the 28th International Conference on Computational Linguistics, pages 2739–2753, Barcelona, Spain (Online). International Committee on Computational Linguistics.