@inproceedings{okabe-etal-2020-multimodal,
title = "Multimodal Quality Estimation for Machine Translation",
author = "Okabe, Shu and
Blain, Fr{\'e}d{\'e}ric and
Specia, Lucia",
editor = "Jurafsky, Dan and
Chai, Joyce and
Schluter, Natalie and
Tetreault, Joel",
booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.acl-main.114",
doi = "10.18653/v1/2020.acl-main.114",
pages = "1233--1240",
abstract = "We propose approaches to Quality Estimation (QE) for Machine Translation that explore both text and visual modalities for Multimodal QE. We compare various multimodality integration and fusion strategies. For both sentence-level and document-level predictions, we show that state-of-the-art neural and feature-based QE frameworks obtain better results when using the additional modality.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="okabe-etal-2020-multimodal">
<titleInfo>
<title>Multimodal Quality Estimation for Machine Translation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Shu</namePart>
<namePart type="family">Okabe</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Frédéric</namePart>
<namePart type="family">Blain</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lucia</namePart>
<namePart type="family">Specia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dan</namePart>
<namePart type="family">Jurafsky</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joyce</namePart>
<namePart type="family">Chai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Natalie</namePart>
<namePart type="family">Schluter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joel</namePart>
<namePart type="family">Tetreault</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We propose approaches to Quality Estimation (QE) for Machine Translation that explore both text and visual modalities for Multimodal QE. We compare various multimodality integration and fusion strategies. For both sentence-level and document-level predictions, we show that state-of-the-art neural and feature-based QE frameworks obtain better results when using the additional modality.</abstract>
<identifier type="citekey">okabe-etal-2020-multimodal</identifier>
<identifier type="doi">10.18653/v1/2020.acl-main.114</identifier>
<location>
<url>https://aclanthology.org/2020.acl-main.114</url>
</location>
<part>
<date>2020-07</date>
<extent unit="page">
<start>1233</start>
<end>1240</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Multimodal Quality Estimation for Machine Translation
%A Okabe, Shu
%A Blain, Frédéric
%A Specia, Lucia
%Y Jurafsky, Dan
%Y Chai, Joyce
%Y Schluter, Natalie
%Y Tetreault, Joel
%S Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics
%D 2020
%8 July
%I Association for Computational Linguistics
%C Online
%F okabe-etal-2020-multimodal
%X We propose approaches to Quality Estimation (QE) for Machine Translation that explore both text and visual modalities for Multimodal QE. We compare various multimodality integration and fusion strategies. For both sentence-level and document-level predictions, we show that state-of-the-art neural and feature-based QE frameworks obtain better results when using the additional modality.
%R 10.18653/v1/2020.acl-main.114
%U https://aclanthology.org/2020.acl-main.114
%U https://doi.org/10.18653/v1/2020.acl-main.114
%P 1233-1240
Markdown (Informal)
[Multimodal Quality Estimation for Machine Translation](https://aclanthology.org/2020.acl-main.114) (Okabe et al., ACL 2020)
ACL
- Shu Okabe, Frédéric Blain, and Lucia Specia. 2020. Multimodal Quality Estimation for Machine Translation. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 1233–1240, Online. Association for Computational Linguistics.