Soil Sensors and Plant Wearables for Smart and Precision Agriculture - PubMed Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 May;33(20):e2007764.
doi: 10.1002/adma.202007764. Epub 2021 Apr 7.

Soil Sensors and Plant Wearables for Smart and Precision Agriculture

Affiliations
Review

Soil Sensors and Plant Wearables for Smart and Precision Agriculture

Heyu Yin et al. Adv Mater. 2021 May.

Abstract

Soil sensors and plant wearables play a critical role in smart and precision agriculture via monitoring real-time physical and chemical signals in the soil, such as temperature, moisture, pH, and pollutants and providing key information to optimize crop growth circumstances, fight against biotic and abiotic stresses, and enhance crop yields. Herein, the recent advances of the important soil sensors in agricultural applications, including temperature sensors, moisture sensors, organic matter compounds sensors, pH sensors, insect/pest sensors, and soil pollutant sensors are reviewed. Major sensing technologies, designs, performance, and pros and cons of each sensor category are highlighted. Emerging technologies such as plant wearables and wireless sensor networks are also discussed in terms of their applications in precision agriculture. The research directions and challenges of soil sensors and intelligent agriculture are finally presented.

Keywords: plant wearables; precision agriculture; smart agriculture; soil sensors; wireless sensor networks.

PubMed Disclaimer

Similar articles

Cited by

  • Rational Design of Cellulosic Triboelectric Materials for Self-Powered Wearable Electronics.
    Meng X, Cai C, Luo B, Liu T, Shao Y, Wang S, Nie S. Meng X, et al. Nanomicro Lett. 2023 May 11;15(1):124. doi: 10.1007/s40820-023-01094-6. Nanomicro Lett. 2023. PMID: 37166487 Free PMC article. Review.
  • Innovative Photonic Sensors for Safety and Security, Part III: Environment, Agriculture and Soil Monitoring.
    Breglio G, Bernini R, Berruti GM, Bruno FA, Buontempo S, Campopiano S, Catalano E, Consales M, Coscetta A, Cutolo A, Cutolo MA, Di Palma P, Esposito F, Fienga F, Giordano M, Iele A, Iadicicco A, Irace A, Janneh M, Laudati A, Leone M, Maresca L, Marrazzo VR, Minardo A, Pisco M, Quero G, Riccio M, Srivastava A, Vaiano P, Zeni L, Cusano A. Breglio G, et al. Sensors (Basel). 2023 Mar 16;23(6):3187. doi: 10.3390/s23063187. Sensors (Basel). 2023. PMID: 36991894 Free PMC article. Review.
  • Field Plant Monitoring from Macro to Micro Scale: Feasibility and Validation of Combined Field Monitoring Approaches from Remote to in Vivo to Cope with Drought Stress in Tomato.
    Vurro F, Croci M, Impollonia G, Marchetti E, Gracia-Romero A, Bettelli M, Araus JL, Amaducci S, Janni M. Vurro F, et al. Plants (Basel). 2023 Nov 14;12(22):3851. doi: 10.3390/plants12223851. Plants (Basel). 2023. PMID: 38005747 Free PMC article.
  • Technology Roadmap for Flexible Sensors.
    Luo Y, Abidian MR, Ahn JH, Akinwande D, Andrews AM, Antonietti M, Bao Z, Berggren M, Berkey CA, Bettinger CJ, Chen J, Chen P, Cheng W, Cheng X, Choi SJ, Chortos A, Dagdeviren C, Dauskardt RH, Di CA, Dickey MD, Duan X, Facchetti A, Fan Z, Fang Y, Feng J, Feng X, Gao H, Gao W, Gong X, Guo CF, Guo X, Hartel MC, He Z, Ho JS, Hu Y, Huang Q, Huang Y, Huo F, Hussain MM, Javey A, Jeong U, Jiang C, Jiang X, Kang J, Karnaushenko D, Khademhosseini A, Kim DH, Kim ID, Kireev D, Kong L, Lee C, Lee NE, Lee PS, Lee TW, Li F, Li J, Liang C, Lim CT, Lin Y, Lipomi DJ, Liu J, Liu K, Liu N, Liu R, Liu Y, Liu Y, Liu Z, Liu Z, Loh XJ, Lu N, Lv Z, Magdassi S, Malliaras GG, Matsuhisa N, Nathan A, Niu S, Pan J, Pang C, Pei Q, Peng H, Qi D, Ren H, Rogers JA, Rowe A, Schmidt OG, Sekitani T, Seo DG, Shen G, Sheng X, Shi Q, Someya T, Song Y, Stavrinidou E, Su M, Sun X, Takei K, Tao XM, Tee BCK, Thean AV, Trung TQ, Wan C, Wang H, Wang J, Wang M, Wang S, Wang T, Wang ZL, Weiss PS, Wen H, Xu S, Xu T, Yan H, Yan X, Yang H, Yang L, Yang S, Yin L, Yu C, Yu G, Yu J, Yu SH, Yu X, Zamburg E, Zhang H, Zhang X, Zhang X, Zhang X, Zhang Y, Zhang Y, Zhao S, Zhao X, Zheng Y, Zheng YQ, Zheng Z, Zhou T, Zhu B, Zhu M, Zhu R, Zh… See abstract for full author list ➔ Luo Y, et al. ACS Nano. 2023 Mar 28;17(6):5211-5295. doi: 10.1021/acsnano.2c12606. Epub 2023 Mar 9. ACS Nano. 2023. PMID: 36892156 Free PMC article. Review.
  • A green compliant hand-held selective electrode device for monitoring active pharmaceuticals and the kinetics of their degradation.
    Badr ElDin N, Dabbish E, Fawaz E, Abd El-Rahman MK, Shoeib T. Badr ElDin N, et al. Sci Rep. 2023 Jul 21;13(1):11792. doi: 10.1038/s41598-023-38416-y. Sci Rep. 2023. PMID: 37479792 Free PMC article.

References

    1. L. Lipper, P. Thornton, B. M. Campbell, T. Baedeker, A. Braimoh, M. Bwalya, P. Caron, A. Cattaneo, D. Garrity, K. Henry, R. Hottle, L. Jackson, A. Jarvis, F. Kossam, W. Mann, N. Mccarthy, A. Meybeck, H. Neufeldt, T. Remington, P. T. Sen, R. Sessa, R. Shula, A. Tibu, E. F. Torquebiau, Nat. Clim. Change 2014, 4, 1068.
    1. N. Alexandratos, J. Bruinsma, World Agriculture towards 2030/2050: The 2012 Revision, FAO, Rome 2012.
    1. R. Gebbers, V. I. Adamchuk, Science 2010, 327, 828.
    1. J. V. Stafford, J. Agric. Eng. Res. 2000, 76, 267.
    1. N. Zhang, M. Wang, N. Wang, Comput. Electron. Agric. 2002, 36, 113.

LinkOut - more resources