Automated continuous noninvasive ward monitoring: future directions and challenges - PubMed Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 May 30;23(1):194.
doi: 10.1186/s13054-019-2485-7.

Automated continuous noninvasive ward monitoring: future directions and challenges

Affiliations

Automated continuous noninvasive ward monitoring: future directions and challenges

Ashish K Khanna et al. Crit Care. .

Abstract

Automated continuous noninvasive ward monitoring may enable subtle changes in vital signs to be recognized. There is already some evidence that automated ward monitoring can improve patient outcome. Before automated continuous noninvasive ward monitoring can be implemented in clinical routine, several challenges and problems need to be considered and resolved; these include the meticulous validation of the monitoring systems with regard to their measurement performance, minimization of artifacts and false alarms, integration and combined analysis of massive amounts of data including various vital signs, and technical problems regarding the connectivity of the systems.

Keywords: Artifacts; Blood pressure; False alarms; Hemodynamic monitoring; Hypotension; Hypoxemia; Normal ward; Peripheral oxygen saturation; Postoperative complications; Remote monitoring.

PubMed Disclaimer

Conflict of interest statement

AKK collaborates with Medtronic (Boulder, CO, USA) as a member of the executive advisory board on respiratory monitoring and steering committee member of the PRODIGY trial and receives honoraria for these services including giving lectures and refunds of travels expenses. AKK serves on the clinical advisory board for Retia Medical (Valhalla, NY, USA), Linshom Medical (Ellicott City, MD, USA), and also serves as a consultant for La Jolla pharmaceuticals (San Diego, CA, USA) and as a subject matter expert for the development of the Anesthesia SimStat system for CAE healthcare (Sarasota, FL, USA). BS collaborates with Pulsion Medical Systems (Feldkirchen, Germany) as a member of the medical advisory board and received honoraria for giving lectures and refunds of travel expenses from Pulsion Medical Systems. BS received research support and honoraria for giving lectures from Edwards Lifesciences (Irvine, CA, USA). BS received institutional restricted research grants, honoraria for consulting, and refunds of travel expenses from Tensys Medical (San Diego, CA, USA). BS received honoraria for giving lectures and refunds of travel expenses from CNSystems Medizintechnik (Graz, Austria). BS received institutional restricted research grants from Retia Medical. BS received honoraria for giving lectures from Philips Medizin Systeme Böblingen (Böblingen, Germany). PH declared that he has no competing interests.

Figures

Fig. 1
Fig. 1
Automated continuous noninvasive ward monitoring allows the healthcare provider to closely follow changes in vital signs over time and identify patients who are deteriorating earlier than conventional intermittent spot check monitoring. Early recognition of clinical deterioration enables rapid therapeutic interventions which may be life saving in certain situations

Similar articles

Cited by

References

    1. McGillion MH, Duceppe E, Allan K, Marcucci M, Yang S, Johnson AP, Ross-Howe S, Peter E, Scott T, Ouellette C, et al. Postoperative remote automated monitoring: need for and state of the science. Can J Cardiol. 2018;34(7):850–862. doi: 10.1016/j.cjca.2018.04.021. - DOI - PubMed
    1. de Vries EN, Ramrattan MA, Smorenburg SM, Gouma DJ, Boermeester MA. The incidence and nature of in-hospital adverse events: a systematic review. Qual Saf Health Care. 2008;17(3):216–223. doi: 10.1136/qshc.2007.023622. - DOI - PMC - PubMed
    1. Perman SM, Stanton E, Soar J, Berg RA, Donnino MW, Mikkelsen ME, Edelson DP, Churpek MM, Yang L, Merchant RM, et al. Location of in-hospital cardiac arrest in the United States-variability in event rate and outcomes. J Am Heart Assoc. 2016;5(10):e003638. - PMC - PubMed
    1. Andersen LW, Berg KM, Chase M, Cocchi MN, Massaro J, Donnino MW. American Heart Association’s Get With The Guidelines-Resuscitation I: acute respiratory compromise on inpatient wards in the United States: incidence, outcomes, and factors associated with in-hospital mortality. Resuscitation. 2016;105:123–129. doi: 10.1016/j.resuscitation.2016.05.014. - DOI - PubMed
    1. Pearse RM, Moreno RP, Bauer P, Pelosi P, Metnitz P, Spies C, Vallet B, Vincent JL, Hoeft A, Rhodes A, et al. Mortality after surgery in Europe: a 7 day cohort study. Lancet. 2012;380(9847):1059–1065. doi: 10.1016/S0140-6736(12)61148-9. - DOI - PMC - PubMed

MeSH terms

LinkOut - more resources