Cancer DNA vaccines: current preclinical and clinical developments and future perspectives - PubMed Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2019 Apr 5;38(1):146.
doi: 10.1186/s13046-019-1154-7.

Cancer DNA vaccines: current preclinical and clinical developments and future perspectives

Affiliations
Review

Cancer DNA vaccines: current preclinical and clinical developments and future perspectives

Alessandra Lopes et al. J Exp Clin Cancer Res. .

Abstract

The recent developments in immuno-oncology have opened an unprecedented avenue for the emergence of vaccine strategies. Therapeutic DNA cancer vaccines are now considered a very promising strategy to activate the immune system against cancer. In the past, several clinical trials using plasmid DNA vaccines demonstrated a good safety profile and the activation of a broad and specific immune response. However, these vaccines often demonstrated only modest therapeutic effects in clinical trials due to the immunosuppressive mechanisms developed by the tumor. To enhance the vaccine-induced immune response and the treatment efficacy, DNA vaccines could be improved by using two different strategies. The first is to increase their immunogenicity by selecting and optimizing the best antigen(s) to be inserted into the plasmid DNA. The second strategy is to combine DNA vaccines with other complementary therapies that could improve their activity by attenuating immunosuppression in the tumor microenvironment or by increasing the activity/number of immune cells. A growing number of preclinical and clinical studies are adopting these two strategies to better exploit the potential of DNA vaccination. In this review, we analyze the last 5-year preclinical studies and 10-year clinical trials using plasmid DNA vaccines for cancer therapy. We also investigate the strategies that are being developed to overcome the limitations in cancer DNA vaccination, revisiting the rationale for different combinations of therapy and the different possibilities in antigen choice. Finally, we highlight the most promising developments and critical points that need to be addressed to move towards the approval of therapeutic cancer DNA vaccines as part of the standard of cancer care in the future.

Keywords: Antigens; Cancer; Cancer vaccines; Combination therapy; DNA vaccines; Immuno-oncology; Immunotherapy; Neoantigens.

PubMed Disclaimer

Conflict of interest statement

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
The different types of cancer vaccines
Fig. 2
Fig. 2
Innate and adaptive immune activation induced by DNA vaccines
Fig. 3
Fig. 3
Mechanisms of action of therapies postulated to mediate synergistic effects in combination with DNA
Fig. 4
Fig. 4
Ongoing clinical trials of the analyzed studies. a Cancer types using cancer DNA vaccines in clinical trials. b Type of antigens encoded in the DNA vaccine. c Studies combining cancer DNA vaccines with other therapies (endocrine therapy, immunotherapy, chemotherapy, chemoradiotherapy or adjuvants) or using DNA vaccines as a single therapy

Similar articles

Cited by

References

    1. Tiptiri-Kourpeti A, Spyridopoulou K, Pappa A, Chlichlia K. DNA vaccines to attack cancer: strategies for improving immunogenicity and efficacy. Pharmacol Ther. 2016;165:32–49. doi: 10.1016/j.pharmthera.2016.05.004. - DOI - PubMed
    1. Gasser M, Waaga-Gasser AM. Therapeutic antibodies in Cancer therapy. In: Böldicke T, editor. Protein targeting compounds: prediction, selection and activity of specific inhibitors. Cham: Springer International Publishing; 2016. pp. 95–120.
    1. Clarke JM, George DJ, Lisi S, Salama AKS. Immune checkpoint blockade: the new frontier in Cancer treatment. Target Oncol. 2018;13(1):1–20. doi: 10.1007/s11523-017-0549-7. - DOI - PubMed
    1. Hargadon KM, Johnson CE, Williams CJ. Immune checkpoint blockade therapy for cancer: an overview of FDA-approved immune checkpoint inhibitors. Int Immunopharmacol. 2018;62:29–39. doi: 10.1016/j.intimp.2018.06.001. - DOI - PubMed
    1. Fry TJ, Mackall CL. T-cell adoptive immunotherapy for acute lymphoblastic leukemia. Hematology American Society of Hematology Education Program. 2013;2013:348–353. doi: 10.1182/asheducation-2013.1.348. - DOI - PMC - PubMed

MeSH terms

LinkOut - more resources