Statistically Segregated k-Space Sampling for Accelerating Multiple-Acquisition MRI
- PMID: 30640604
- DOI: 10.1109/TMI.2019.2892378
Statistically Segregated k-Space Sampling for Accelerating Multiple-Acquisition MRI
Abstract
A central limitation of multiple-acquisition magnetic resonance imaging (MRI) is the degradation in scan efficiency as the number of distinct datasets grows. Sparse recovery techniques can alleviate this limitation via randomly undersampled acquisitions. A frequent sampling strategy is to prescribe for each acquisition a different random pattern drawn from a common sampling density. However, naive random patterns often contain gaps or clusters across the acquisition dimension that, in turn, can degrade reconstruction quality or reduce scan efficiency. To address this problem, a statistically segregated sampling method is proposed for multiple-acquisition MRI. This method generates multiple patterns sequentially while adaptively modifying the sampling density to minimize k-space overlap across patterns. As a result, it improves incoherence across acquisitions while still maintaining similar sampling density across the radial dimension of k-space. Comprehensive simulations and in vivo results are presented for phase-cycled balanced steady-state free precession and multi-echo [Formula: see text]-weighted imaging. Segregated sampling achieves significantly improved quality in both Fourier and compressed-sensing reconstructions of multiple-acquisition datasets.
Similar articles
-
Profile-encoding reconstruction for multiple-acquisition balanced steady-state free precession imaging.Magn Reson Med. 2017 Oct;78(4):1316-1329. doi: 10.1002/mrm.26507. Epub 2016 Oct 31. Magn Reson Med. 2017. PMID: 27797111
-
Accelerated phase-cycled SSFP imaging with compressed sensing.IEEE Trans Med Imaging. 2015 Jan;34(1):107-15. doi: 10.1109/TMI.2014.2346814. Epub 2014 Aug 12. IEEE Trans Med Imaging. 2015. PMID: 25134078
-
Varying undersampling directions for accelerating multiple acquisition magnetic resonance imaging.NMR Biomed. 2022 Apr;35(4):e4572. doi: 10.1002/nbm.4572. Epub 2021 Jun 10. NMR Biomed. 2022. PMID: 34114253
-
Partial fourier shells trajectory for non-cartesian MRI.Phys Med Biol. 2019 Feb 6;64(4):04NT01. doi: 10.1088/1361-6560/aafcc5. Phys Med Biol. 2019. PMID: 30625455 Free PMC article.
-
SPARKLING: variable-density k-space filling curves for accelerated T2* -weighted MRI.Magn Reson Med. 2019 Jun;81(6):3643-3661. doi: 10.1002/mrm.27678. Epub 2019 Feb 17. Magn Reson Med. 2019. PMID: 30773679
Cited by
-
Deep learning for accelerated and robust MRI reconstruction.MAGMA. 2024 Jul;37(3):335-368. doi: 10.1007/s10334-024-01173-8. Epub 2024 Jul 23. MAGMA. 2024. PMID: 39042206 Free PMC article. Review.
-
J-MoDL: Joint Model-Based Deep Learning for Optimized Sampling and Reconstruction.IEEE J Sel Top Signal Process. 2020 Oct;14(6):1151-1162. doi: 10.1109/jstsp.2020.3004094. Epub 2020 Jun 22. IEEE J Sel Top Signal Process. 2020. PMID: 33613806 Free PMC article.
-
Evaluation of kernel low-rank compressed sensing in preclinical diffusion magnetic resonance imaging.Front Neurosci. 2023 Jun 2;17:1172830. doi: 10.3389/fnins.2023.1172830. eCollection 2023. Front Neurosci. 2023. PMID: 37332879 Free PMC article.
-
Utilizing the Wavelet Transform's Structure in Compressed Sensing.Signal Image Video Process. 2021 Oct;15(7):1407-1414. doi: 10.1007/s11760-021-01872-y. Epub 2021 Mar 9. Signal Image Video Process. 2021. PMID: 34531930 Free PMC article.
-
Mapping Human Fetal Brain Maturation In Vivo Using Quantitative MRI.AJNR Am J Neuroradiol. 2021 Nov;42(11):2086-2093. doi: 10.3174/ajnr.A7286. Epub 2021 Sep 9. AJNR Am J Neuroradiol. 2021. PMID: 34503947 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Medical
Research Materials