DeepCrack: Learning Hierarchical Convolutional Features for Crack Detection - PubMed Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Oct 31.
doi: 10.1109/TIP.2018.2878966. Online ahead of print.

DeepCrack: Learning Hierarchical Convolutional Features for Crack Detection

DeepCrack: Learning Hierarchical Convolutional Features for Crack Detection

Qin Zou et al. IEEE Trans Image Process. .

Abstract

Cracks are typical line structures that are of interest in many computer-vision applications. In practice, many cracks, e.g., pavement cracks, show poor continuity and low contrast, which brings great challenges to image-based crack detection by using low-level features. In this paper, we propose DeepCrack - an end-to-end trainable deep convolutional neural network for automatic crack detection by learning high-level features for crack representation. In this method, multi-scale deep convolutional features learned at hierarchical convolutional stages are fused together to capture the line structures. More detailed representations are made in larger-scale feature maps and more holistic representations are made in smaller-scale feature maps. We build DeepCrack net on the encoder-decoder architecture of SegNet, and pairwisely fuse the convolutional features generated in the encoder network and in the decoder network at the same scale. We train DeepCrack net on one crack dataset and evaluate it on three others. The experimental results demonstrate that DeepCrack achieves F-Measure over 0.87 on the three challenging datasets in average and outperforms the current state-of-the-art methods.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources