Unsupervised Identification of Disease Marker Candidates in Retinal OCT Imaging Data - PubMed Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Apr;38(4):1037-1047.
doi: 10.1109/TMI.2018.2877080. Epub 2018 Oct 22.

Unsupervised Identification of Disease Marker Candidates in Retinal OCT Imaging Data

Unsupervised Identification of Disease Marker Candidates in Retinal OCT Imaging Data

Philipp Seebock et al. IEEE Trans Med Imaging. 2019 Apr.

Abstract

The identification and quantification of markers in medical images is critical for diagnosis, prognosis, and disease management. Supervised machine learning enables the detection and exploitation of findings that are known a priori after annotation of training examples by experts. However, supervision does not scale well, due to the amount of necessary training examples, and the limitation of the marker vocabulary to known entities. In this proof-of-concept study, we propose unsupervised identification of anomalies as candidates for markers in retinal optical coherence tomography (OCT) imaging data without a constraint to a priori definitions. We identify and categorize marker candidates occurring frequently in the data and demonstrate that these markers show a predictive value in the task of detecting disease. A careful qualitative analysis of the identified data driven markers reveals how their quantifiable occurrence aligns with our current understanding of disease course, in early- and late age-related macular degeneration (AMD) patients. A multi-scale deep denoising autoencoder is trained on healthy images, and a one-class support vector machine identifies anomalies in new data. Clustering in the anomalies identifies stable categories. Using these markers to classify healthy-, early AMD- and late AMD cases yields an accuracy of 81.40%. In a second binary classification experiment on a publicly available data set (healthy versus intermediate AMD), the model achieves an area under the ROC curve of 0.944.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources