A Neural Probe With Up to 966 Electrodes and Up to 384 Configurable Channels in 0.13 $\mu$m SOI CMOS
- PMID: 28422663
- DOI: 10.1109/TBCAS.2016.2646901
A Neural Probe With Up to 966 Electrodes and Up to 384 Configurable Channels in 0.13 $\mu$m SOI CMOS
Abstract
In vivo recording of neural action-potential and local-field-potential signals requires the use of high-resolution penetrating probes. Several international initiatives to better understand the brain are driving technology efforts towards maximizing the number of recording sites while minimizing the neural probe dimensions. We designed and fabricated (0.13- μm SOI Al CMOS) a 384-channel configurable neural probe for large-scale in vivo recording of neural signals. Up to 966 selectable active electrodes were integrated along an implantable shank (70 μm wide, 10 mm long, 20 μm thick), achieving a crosstalk of [Formula: see text] dB. The probe base (5 × 9 mm 2 ) implements dual-band recording and a 171.6 Mbps digital interface. Measurement results show a total input-referred noise of 6.4 μ V rms and a total power consumption of 49.1 μW/channel.
Similar articles
-
SiNAPS: An implantable active pixel sensor CMOS-probe for simultaneous large-scale neural recordings.Biosens Bioelectron. 2019 Feb 1;126:355-364. doi: 10.1016/j.bios.2018.10.032. Epub 2018 Oct 19. Biosens Bioelectron. 2019. PMID: 30466053
-
A multichannel integrated circuit for electrical recording of neural activity, with independent channel programmability.IEEE Trans Biomed Circuits Syst. 2012 Apr;6(2):101-10. doi: 10.1109/TBCAS.2011.2181842. IEEE Trans Biomed Circuits Syst. 2012. PMID: 23852975
-
A Compact Quad-Shank CMOS Neural Probe With 5,120 Addressable Recording Sites and 384 Fully Differential Parallel Channels.IEEE Trans Biomed Circuits Syst. 2019 Dec;13(6):1625-1634. doi: 10.1109/TBCAS.2019.2942450. Epub 2019 Sep 19. IEEE Trans Biomed Circuits Syst. 2019. PMID: 31545741
-
In Vivo Observations of Rapid Scattered Light Changes Associated with Neurophysiological Activity.In: Frostig RD, editor. In Vivo Optical Imaging of Brain Function. 2nd edition. Boca Raton (FL): CRC Press/Taylor & Francis; 2009. Chapter 5. In: Frostig RD, editor. In Vivo Optical Imaging of Brain Function. 2nd edition. Boca Raton (FL): CRC Press/Taylor & Francis; 2009. Chapter 5. PMID: 26844322 Free Books & Documents. Review.
-
New approaches for CMOS-based devices for large-scale neural recording.Curr Opin Neurobiol. 2015 Jun;32:31-7. doi: 10.1016/j.conb.2014.10.007. Epub 2014 Oct 30. Curr Opin Neurobiol. 2015. PMID: 25463562 Review.
Cited by
-
An approach for long-term, multi-probe Neuropixels recordings in unrestrained rats.Elife. 2020 Oct 22;9:e59716. doi: 10.7554/eLife.59716. Elife. 2020. PMID: 33089778 Free PMC article.
-
Frequency-Division Multiplexing with Graphene Active Electrodes for Neurosensor Applications.IEEE Trans Circuits Syst II Express Briefs. 2021 May;68(5):1735-1739. doi: 10.1109/tcsii.2021.3066556. Epub 2021 Mar 17. IEEE Trans Circuits Syst II Express Briefs. 2021. PMID: 34017221 Free PMC article.
-
Manufacturing Processes of Implantable Microelectrode Array for In Vivo Neural Electrophysiological Recordings and Stimulation: A State-Of-the-Art Review.J Micro Nanomanuf. 2022 Dec 1;10(4):041001. doi: 10.1115/1.4063179. Epub 2023 Oct 9. J Micro Nanomanuf. 2022. PMID: 37860671 Free PMC article.
-
A Chopper-Stabilized, Current Feedback, Neural Recording Amplifier.IEEE Solid State Circuits Lett. 2019 Mar;2(3):17-20. doi: 10.1109/lssc.2019.2916754. Epub 2019 May 14. IEEE Solid State Circuits Lett. 2019. PMID: 33748689 Free PMC article.
-
Bayesian inference of neuronal assemblies.PLoS Comput Biol. 2019 Oct 31;15(10):e1007481. doi: 10.1371/journal.pcbi.1007481. eCollection 2019 Oct. PLoS Comput Biol. 2019. PMID: 31671090 Free PMC article.
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
Miscellaneous