The dual role of nitrogen supply in controlling the growth and toxicity of cyanobacterial blooms - PubMed Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2016 Apr:54:87-97.
doi: 10.1016/j.hal.2016.01.010.

The dual role of nitrogen supply in controlling the growth and toxicity of cyanobacterial blooms

Affiliations
Review

The dual role of nitrogen supply in controlling the growth and toxicity of cyanobacterial blooms

Christopher J Gobler et al. Harmful Algae. 2016 Apr.

Abstract

Historically, phosphorus (P) has been considered the primary limiting nutrient for phytoplankton assemblages in freshwater ecosystems. This review, supported by new findings from Lake Erie, highlights recent molecular, laboratory, and field evidence that the growth and toxicity of some non-diazotrophic blooms of cyanobacteria can be controlled by nitrogen (N). Cyanobacteria such as Microcystis possess physiological adaptations that allow them to dominate low-P surface waters, and in temperate lakes, cyanobacterial densities can be controlled by N availability. Beyond total cyanobacterial biomass, N loading has been shown to selectively promote the abundance of Microcystis and Planktothrix strains capable of synthesizing microcystins over strains that do not possess this ability. Among strains of cyanobacteria capable of synthesizing the N-rich microcystins, cellular toxin quotas have been found to depend upon exogenous N supplies. Herein, multi-year observations from western Lake Erie are presented demonstrating that microcystin concentrations peak in parallel with inorganic N, but not orthophosphate, concentrations and are significantly lower (p<0.01) during years of reduced inorganic nitrogen loading and concentrations. Collectively, this information underscores the importance of N as well as P in controlling toxic cyanobacteria blooms. Furthermore, it supports the premise that management actions to reduce P in the absence of concurrent restrictions on N loading may not effectively control the growth and/or toxicity of non-diazotrophic toxic cyanobacteria such as the cosmopolitan, toxin-producing genus, Microcystis.

Keywords: Cyanobacteria; Diazotrophy; Microcystis; Nitrogen; Nutrients; Phosphorus.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources