Detecting Large Quantum Fisher Information with Finite Measurement Precision
- PMID: 26991166
- DOI: 10.1103/PhysRevLett.116.090801
Detecting Large Quantum Fisher Information with Finite Measurement Precision
Abstract
We propose an experimentally accessible scheme to determine the lower bounds on the quantum Fisher information (QFI), which ascertains multipartite entanglement or usefulness for quantum metrology. The scheme is based on comparing the measurement statistics of a state before and after a small unitary rotation. We argue that, in general, the limited resolution of collective observables prevents the detection of large QFI. This can be overcome by performing an additional operation prior to the measurement. We illustrate the power of this protocol for present-day spin-squeezing experiments, where the same operation used for the preparation of the initial spin-squeezed state improves also the measurement precision and hence the lower bound on the QFI by 2 orders of magnitude. We also establish a connection to the Leggett-Garg inequalities. We show how to simulate a variant of the inequalities with our protocol and demonstrate that large QFI is necessary for their violation with coarse-grained detectors.
Similar articles
-
Quantum Metrology: Surpassing the shot-noise limit with Dzyaloshinskii-Moriya interaction.Sci Rep. 2015 Nov 9;5:16360. doi: 10.1038/srep16360. Sci Rep. 2015. PMID: 26549409 Free PMC article.
-
Investigating quantum metrology in noisy channels.Sci Rep. 2017 Nov 30;7(1):16622. doi: 10.1038/s41598-017-16710-w. Sci Rep. 2017. PMID: 29192163 Free PMC article.
-
Quantum Fisher Information from Randomized Measurements.Phys Rev Lett. 2021 Dec 24;127(26):260501. doi: 10.1103/PhysRevLett.127.260501. Phys Rev Lett. 2021. PMID: 35029488
-
Multipartite Entanglement Structure in the Eigenstate Thermalization Hypothesis.Phys Rev Lett. 2020 Jan 31;124(4):040605. doi: 10.1103/PhysRevLett.124.040605. Phys Rev Lett. 2020. PMID: 32058780
-
Analysis of entanglement measures and LOCC maximized quantum Fisher information of general two qubit systems.Sci Rep. 2014 Jun 24;4:5422. doi: 10.1038/srep05422. Sci Rep. 2014. PMID: 24957694 Free PMC article.
Cited by
-
Quantum metrology with imperfect measurements.Nat Commun. 2022 Nov 15;13(1):6971. doi: 10.1038/s41467-022-33563-8. Nat Commun. 2022. PMID: 36379948 Free PMC article.
-
Stroboscopic approach to trapped-ion quantum information processing with squeezed phonons.Phys Rev A (Coll Park). 2019;100:https://doi.org/10.1103/PhysRevA.100.043417. Phys Rev A (Coll Park). 2019. PMID: 33134654 Free PMC article.
-
Quantum-enhanced sensing using non-classical spin states of a highly magnetic atom.Nat Commun. 2018 Nov 23;9(1):4955. doi: 10.1038/s41467-018-07433-1. Nat Commun. 2018. PMID: 30470745 Free PMC article.
-
Quantum metrology with quantum-chaotic sensors.Nat Commun. 2018 Apr 10;9(1):1351. doi: 10.1038/s41467-018-03623-z. Nat Commun. 2018. PMID: 29636451 Free PMC article.
-
Fisher Information as General Metrics of Quantum Synchronization.Entropy (Basel). 2023 Jul 26;25(8):1116. doi: 10.3390/e25081116. Entropy (Basel). 2023. PMID: 37628145 Free PMC article.
LinkOut - more resources
Full Text Sources
Other Literature Sources