Effect of fermentation time and drying temperature on volatile compounds in cocoa - PubMed Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 May 1;132(1):277-88.
doi: 10.1016/j.foodchem.2011.10.078. Epub 2011 Oct 31.

Effect of fermentation time and drying temperature on volatile compounds in cocoa

Affiliations

Effect of fermentation time and drying temperature on volatile compounds in cocoa

J Rodriguez-Campos et al. Food Chem. .

Abstract

The effects of fermentation time and drying temperature on the profile of volatile compounds were evaluated after 2, 4, 6, and 8 fermentation days followed by drying at 60, 70 and 80°C. These treatments were compared with dry cocoa controls produced in a Samoa drier and by a sun-drying process. A total of 58 volatile compounds were identified by SPME-HS/GC-MS and classified as: esters (20), alcohols (12), acids (11), aldehydes and ketones (8), pyrazines (4) and other compounds (3). Six days of fermentation were enough to produce volatile compounds with flavour notes desirable in cocoa beans, as well as to avoid the production of compounds with off-flavour notes. Drying at 70 and 80°C after six fermentation days presented a volatile profile similar to the one obtained by sun drying. However, drying at 70°C represents a lower cost. Given the above results, in the present study the optimal conditions for fermentation and drying of cocoa beans were 6days of fermentation, followed by drying at 70°C.

Keywords: Cocoa bean quality; Fermentation–drying process; GC–MS; Volatile profile.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources