Metalearning: a survey of trends and technologies
- PMID: 26069389
- PMCID: PMC4459543
- DOI: 10.1007/s10462-013-9406-y
Metalearning: a survey of trends and technologies
Abstract
Metalearning attracted considerable interest in the machine learning community in the last years. Yet, some disagreement remains on what does or what does not constitute a metalearning problem and in which contexts the term is used in. This survey aims at giving an all-encompassing overview of the research directions pursued under the umbrella of metalearning, reconciling different definitions given in scientific literature, listing the choices involved when designing a metalearning system and identifying some of the future research challenges in this domain.
Keywords: Life-long learning; Metaknowledge extraction; Metalearning.
Figures
Similar articles
-
Review on the Application of Metalearning in Artificial Intelligence.Comput Intell Neurosci. 2021 Jul 5;2021:1560972. doi: 10.1155/2021/1560972. eCollection 2021. Comput Intell Neurosci. 2021. Retraction in: Comput Intell Neurosci. 2023 Dec 13;2023:9831437. doi: 10.1155/2023/9831437 PMID: 34326864 Free PMC article. Retracted. Review.
-
Learning to think conceptually: metaknowledge and metalearning strategies for educationally disadvantaged students in nursing.J N Y State Nurses Assoc. 1984 Jun;15(2):17-24. J N Y State Nurses Assoc. 1984. PMID: 6589371 No abstract available.
-
AUC-Maximizing Ensembles through Metalearning.Int J Biostat. 2016 May 1;12(1):203-18. doi: 10.1515/ijb-2015-0035. Int J Biostat. 2016. PMID: 27227721 Free PMC article.
-
MetaMixUp: Learning Adaptive Interpolation Policy of MixUp With Metalearning.IEEE Trans Neural Netw Learn Syst. 2022 Jul;33(7):3050-3064. doi: 10.1109/TNNLS.2020.3049011. Epub 2022 Jul 6. IEEE Trans Neural Netw Learn Syst. 2022. PMID: 33646956
-
Metalearning and neuromodulation.Neural Netw. 2002 Jun-Jul;15(4-6):495-506. doi: 10.1016/s0893-6080(02)00044-8. Neural Netw. 2002. PMID: 12371507 Review.
Cited by
-
Adaptive and Resilient Soft Tensegrity Robots.Soft Robot. 2018 Jun;5(3):318-329. doi: 10.1089/soro.2017.0066. Epub 2018 Apr 17. Soft Robot. 2018. PMID: 29664708 Free PMC article.
-
iLearnPlus: a comprehensive and automated machine-learning platform for nucleic acid and protein sequence analysis, prediction and visualization.Nucleic Acids Res. 2021 Jun 4;49(10):e60. doi: 10.1093/nar/gkab122. Nucleic Acids Res. 2021. PMID: 33660783 Free PMC article.
-
Drug-drug interaction prediction: databases, web servers and computational models.Brief Bioinform. 2023 Nov 22;25(1):bbad445. doi: 10.1093/bib/bbad445. Brief Bioinform. 2023. PMID: 38113076 Free PMC article. Review.
-
A Bootstrap Framework for Aggregating within and between Feature Selection Methods.Entropy (Basel). 2021 Feb 6;23(2):200. doi: 10.3390/e23020200. Entropy (Basel). 2021. PMID: 33561948 Free PMC article.
-
Improving drug response prediction by integrating multiple data sources: matrix factorization, kernel and network-based approaches.Brief Bioinform. 2021 Jan 18;22(1):346-359. doi: 10.1093/bib/bbz153. Brief Bioinform. 2021. PMID: 31838491 Free PMC article.
References
-
- Abbasi A, Albrecht C, Vance AO, Hansen JV. Metafraud: a meta-learning framework for detecting financial fraud. Manag Inf Syst Q. 2012;36(4):1293–1327.
-
- Aiolli F (2012) Transfer learning by kernel meta-learning. J Mach Learn Res Proc Trac 27:81–95
-
- Bensusan H, Giraud-Carrier C, Kennedy C (2000) A higher-order approach to meta-learning. In: Proceedings of the ECML’2000 workshop on meta-learing: building automatic advice strategies for model selection and method combination
-
- Bernstein A, Provost F, Hill S. Toward intelligent assistance for a data mining process: an ontology-based approach for cost-sensitive classification. IEEE Trans Knowl Data Eng. 2005;17:503–518. doi: 10.1109/TKDE.2005.67. - DOI
-
- Bifet A, Holmes G, Kirkby R, Pfahringer B (2011) Data stream mining a practical approach. Technical report. The Unibversity of Waikato
LinkOut - more resources
Full Text Sources
Other Literature Sources