Neural circuits as computational dynamical systems
- PMID: 24509098
- DOI: 10.1016/j.conb.2014.01.008
Neural circuits as computational dynamical systems
Abstract
Many recent studies of neurons recorded from cortex reveal complex temporal dynamics. How such dynamics embody the computations that ultimately lead to behavior remains a mystery. Approaching this issue requires developing plausible hypotheses couched in terms of neural dynamics. A tool ideally suited to aid in this question is the recurrent neural network (RNN). RNNs straddle the fields of nonlinear dynamical systems and machine learning and have recently seen great advances in both theory and application. I summarize recent theoretical and technological advances and highlight an example of how RNNs helped to explain perplexing high-dimensional neurophysiological data in the prefrontal cortex.
Copyright © 2014 Elsevier Ltd. All rights reserved.
Similar articles
-
Recognizing recurrent neural networks (rRNN): Bayesian inference for recurrent neural networks.Biol Cybern. 2012 Jul;106(4-5):201-17. doi: 10.1007/s00422-012-0490-x. Epub 2012 May 12. Biol Cybern. 2012. PMID: 22581026
-
[Dynamic paradigm in psychopathology: "chaos theory", from physics to psychiatry].Encephale. 2001 May-Jun;27(3):260-8. Encephale. 2001. PMID: 11488256 French.
-
Computational design and nonlinear dynamics of a recurrent network model of the primary visual cortex.Neural Comput. 2001 Aug;13(8):1749-80. doi: 10.1162/08997660152469332. Neural Comput. 2001. PMID: 11506669
-
Dynamical models of cortical circuits.Curr Opin Neurobiol. 2014 Apr;25:228-36. doi: 10.1016/j.conb.2014.01.017. Epub 2014 Mar 20. Curr Opin Neurobiol. 2014. PMID: 24658059 Review.
-
Grid cells: the position code, neural network models of activity, and the problem of learning.Hippocampus. 2008;18(12):1283-300. doi: 10.1002/hipo.20519. Hippocampus. 2008. PMID: 19021263 Review.
Cited by
-
Temporal scaling of human scalp-recorded potentials.Proc Natl Acad Sci U S A. 2022 Oct 25;119(43):e2214638119. doi: 10.1073/pnas.2214638119. Epub 2022 Oct 18. Proc Natl Acad Sci U S A. 2022. PMID: 36256817 Free PMC article.
-
The receptive field is dead. Long live the receptive field?Curr Opin Neurobiol. 2014 Apr;25:ix-xii. doi: 10.1016/j.conb.2014.02.001. Epub 2014 Mar 4. Curr Opin Neurobiol. 2014. PMID: 24618227 Free PMC article.
-
From biomechanics to sport psychology: the current oscillatory approach.Front Psychol. 2015 Oct 31;6:1642. doi: 10.3389/fpsyg.2015.01642. eCollection 2015. Front Psychol. 2015. PMID: 26582999 Free PMC article. No abstract available.
-
Topological features of spike trains in recurrent spiking neural networks that are trained to generate spatiotemporal patterns.Front Comput Neurosci. 2024 Feb 23;18:1363514. doi: 10.3389/fncom.2024.1363514. eCollection 2024. Front Comput Neurosci. 2024. PMID: 38463243 Free PMC article.
-
Training Excitatory-Inhibitory Recurrent Neural Networks for Cognitive Tasks: A Simple and Flexible Framework.PLoS Comput Biol. 2016 Feb 29;12(2):e1004792. doi: 10.1371/journal.pcbi.1004792. eCollection 2016 Feb. PLoS Comput Biol. 2016. PMID: 26928718 Free PMC article.
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources