Overall design and implementation of the virtual glove - PubMed Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Nov;43(11):1927-40.
doi: 10.1016/j.compbiomed.2013.08.026. Epub 2013 Sep 25.

Overall design and implementation of the virtual glove

Affiliations

Overall design and implementation of the virtual glove

Giuseppe Placidi et al. Comput Biol Med. 2013 Nov.

Abstract

Post-stroke patients and people suffering from hand diseases often need rehabilitation therapy. The recovery of original skills, when possible, is closely related to the frequency, quality, and duration of rehabilitative therapy. Rehabilitation gloves are tools used both to facilitate rehabilitation and to control improvements by an evaluation system. Mechanical gloves have high cost, are often cumbersome, are not re-usable and, hence, not usable with the healthy hand to collect patient-specific hand mobility information to which rehabilitation should tend. The approach we propose is the virtual glove, a system that, unlike tools based on mechanical haptic interfaces, uses a set of video cameras surrounding the patient hand to collect a set of synchronized videos used to track hand movements. The hand tracking is associated with a numerical hand model that is used to calculate physical, geometrical and mechanical parameters, and to implement some boundary constraints such as joint dimensions, shape, joint angles, and so on. Besides being accurate, the proposed system is aimed to be low cost, not bulky (touch-less), easy to use, and re-usable. Previous works described the virtual glove general concepts, the hand model, and its characterization including system calibration strategy. The present paper provides the virtual glove overall design, both in real-time and in off-line modalities. In particular, the real-time modality is described and implemented and a marker-based hand tracking algorithm, including a marker positioning, coloring, labeling, detection and classification strategy, is presented for the off-line modality. Moreover, model based hand tracking experimental measurements are reported, discussed and compared with the corresponding poses of the real hand. An error estimation strategy is also presented and used for the collected measurements. System limitations and future work for system improvement are also discussed.

Keywords: Hand rehabilitation; Hand tracking; Numerical hand model; Rehabilitation glove; Virtual glove.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources