EEG-based classification of fast and slow hand movements using Wavelet-CSP algorithm - PubMed Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Aug;60(8):2123-32.
doi: 10.1109/TBME.2013.2248153. Epub 2013 Feb 21.

EEG-based classification of fast and slow hand movements using Wavelet-CSP algorithm

Affiliations

EEG-based classification of fast and slow hand movements using Wavelet-CSP algorithm

Neethu Robinson et al. IEEE Trans Biomed Eng. 2013 Aug.

Abstract

A brain-computer interface (BCI) acquires brain signals, extracts informative features, and translates these features to commands to control an external device. This paper investigates the application of a noninvasive electroencephalography (EEG)-based BCI to identify brain signal features in regard to actual hand movement speed. This provides a more refined control for a BCI system in terms of movement parameters. An experiment was performed to collect EEG data from subjects while they performed right-hand movement at two different speeds, namely fast and slow, in four different directions. The informative features from the data were obtained using the Wavelet-Common Spatial Pattern (W-CSP) algorithm that provided high-temporal-spatial-spectral resolution. The applicability of these features to classify the two speeds and to reconstruct the speed profile was studied. The results for classifying speed across seven subjects yielded a mean accuracy of 83.71% using a Fisher Linear Discriminant (FLD) classifier. The speed components were reconstructed using multiple linear regression and significant correlation of 0.52 (Pearson's linear correlation coefficient) was obtained between recorded and reconstructed velocities on an average. The spatial patterns of the W-CSP features obtained showed activations in parietal and motor areas of the brain. The results achieved promises to provide a more refined control in BCI by including control of movement speed.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources