Spectro-temporal modulation subspace-spanning filter bank features for robust automatic speech recognition - PubMed Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 May;131(5):4134-51.
doi: 10.1121/1.3699200.

Spectro-temporal modulation subspace-spanning filter bank features for robust automatic speech recognition

Affiliations

Spectro-temporal modulation subspace-spanning filter bank features for robust automatic speech recognition

Marc René Schädler et al. J Acoust Soc Am. 2012 May.

Abstract

In an attempt to increase the robustness of automatic speech recognition (ASR) systems, a feature extraction scheme is proposed that takes spectro-temporal modulation frequencies (MF) into account. This physiologically inspired approach uses a two-dimensional filter bank based on Gabor filters, which limits the redundant information between feature components, and also results in physically interpretable features. Robustness against extrinsic variation (different types of additive noise) and intrinsic variability (arising from changes in speaking rate, effort, and style) is quantified in a series of recognition experiments. The results are compared to reference ASR systems using Mel-frequency cepstral coefficients (MFCCs), MFCCs with cepstral mean subtraction (CMS) and RASTA-PLP features, respectively. Gabor features are shown to be more robust against extrinsic variation than the baseline systems without CMS, with relative improvements of 28% and 16% for two training conditions (using only clean training samples or a mixture of noisy and clean utterances, respectively). When used in a state-of-the-art system, improvements of 14% are observed when spectro-temporal features are concatenated with MFCCs, indicating the complementarity of those feature types. An analysis of the importance of specific MF shows that temporal MF up to 25 Hz and spectral MF up to 0.25 cycles/channel are beneficial for ASR.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources