2 cm spatial-resolution and 2 km range Brillouin optical fiber sensor using a transient differential pulse pair
- PMID: 22441465
- DOI: 10.1364/AO.51.001229
2 cm spatial-resolution and 2 km range Brillouin optical fiber sensor using a transient differential pulse pair
Abstract
We report a high-spatial-resolution and long-range distributed temperature sensor through optimizing differential pulse-width pair Brillouin optical time-domain analysis (DPP-BOTDA). In DPP-BOTDA, the differential signal suffers from a signal-to-noise ratio (SNR) reduction with respect to the original signals, and for a fixed pulse-width difference the SNR reduction increases with the pulse width. Through reducing the pulse width to a transient regime (near to or less than the phonon lifetime) to decrease the SNR reduction after the differential process, the optimized 8/8.2 ns pulse pair is applied to realize a 2 cm spatial resolution, where a pulse generator with a 150 ps fall-time is used to ensure the effective resolution of DPP-BOTDA. In the experiment, a 2 cm spatial-resolution hot-spot detection with a 2 °C temperature accuracy is demonstrated over a 2 km sensing fiber.
© 2012 Optical Society of America
Similar articles
-
Optimization of a DPP-BOTDA sensor with 25 cm spatial resolution over 60 km standard single-mode fiber using Simplex codes and optical pre-amplification.Opt Express. 2012 Mar 26;20(7):6860-9. doi: 10.1364/OE.20.006860. Opt Express. 2012. PMID: 22453363
-
High-resolution DPP-BOTDA over 50 km LEAF using return-to-zero coded pulses.Opt Lett. 2010 May 15;35(10):1503-5. doi: 10.1364/OL.35.001503. Opt Lett. 2010. PMID: 20479789
-
Differential Brillouin gain for improving the temperature accuracy and spatial resolution in a long-distance distributed fiber sensor.Appl Opt. 2009 Aug 1;48(22):4297-301. doi: 10.1364/ao.48.004297. Appl Opt. 2009. PMID: 19649031
-
Detecting cm-scale hot spot over 24-km-long single-mode fiber by using differential pulse pair BOTDA based on double-peak spectrum.Opt Express. 2017 Jul 24;25(15):17727-17736. doi: 10.1364/OE.25.017727. Opt Express. 2017. PMID: 28789264
-
Physics and applications of Raman distributed optical fiber sensing.Light Sci Appl. 2022 May 7;11(1):128. doi: 10.1038/s41377-022-00811-x. Light Sci Appl. 2022. PMID: 35525847 Free PMC article. Review.
Cited by
-
Single-shot BOTDA based on an optical chirp chain probe wave for distributed ultrafast measurement.Light Sci Appl. 2018 Jul 11;7:32. doi: 10.1038/s41377-018-0030-0. eCollection 2018. Light Sci Appl. 2018. PMID: 30839630 Free PMC article.
-
Structural Crack Detection Using DPP-BOTDA and Crack-Induced Features of the Brillouin Gain Spectrum.Sensors (Basel). 2020 Dec 4;20(23):6947. doi: 10.3390/s20236947. Sensors (Basel). 2020. PMID: 33291780 Free PMC article.
-
The performance analysis of distributed Brillouin corrosion sensors for steel reinforced concrete structures.Sensors (Basel). 2013 Dec 27;14(1):431-42. doi: 10.3390/s140100431. Sensors (Basel). 2013. PMID: 24379048 Free PMC article.
-
Recent Advances in Brillouin Optical Time Domain Reflectometry.Sensors (Basel). 2019 Apr 18;19(8):1862. doi: 10.3390/s19081862. Sensors (Basel). 2019. PMID: 31003510 Free PMC article. Review.
-
Fiber Optic Sensing Technology and Vision Sensing Technology for Structural Health Monitoring.Sensors (Basel). 2023 Apr 27;23(9):4334. doi: 10.3390/s23094334. Sensors (Basel). 2023. PMID: 37177536 Free PMC article. Review.
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous