Three-dimensional reconstruction of the crystalline lens gradient index distribution from OCT imaging
- PMID: 20941090
- DOI: 10.1364/OE.18.021905
Three-dimensional reconstruction of the crystalline lens gradient index distribution from OCT imaging
Abstract
We present an optimization method to retrieve the gradient index (GRIN) distribution of the in-vitro crystalline lens from optical path difference data extracted from OCT images. Three-dimensional OCT images of the crystalline lens are obtained in two orientations (with the anterior surface up and posterior surface up), allowing to obtain the lens geometry. The GRIN reconstruction method is based on a genetic algorithm that searches for the parameters of a 4-variable GRIN model that best fits the distorted posterior surface of the lens. Computer simulations showed that, for noise of 5 μm in the surface elevations, the GRIN is recovered with an accuracy of 0.003 and 0.010 in the refractive indices of the nucleus and surface of the lens, respectively. The method was applied to retrieve three-dimensionally the GRIN of a porcine crystalline lens in vitro. We found a refractive index ranging from 1.362 in the surface to 1.443 in the nucleus of the lens, an axial exponential decay of the GRIN profile of 2.62 and a meridional exponential decay ranging from 3.56 to 5.18. The effect of GRIN on the aberrations of the lens also studied. The estimated spherical aberration of the measured porcine lens was 2.87 μm assuming a homogenous equivalent refractive index, and the presence of GRIN shifted the spherical aberration toward negative values (-0.97 μm), for a 6-mm pupil.
Similar articles
-
Contribution of the gradient refractive index and shape to the crystalline lens spherical aberration and astigmatism.Vision Res. 2013 Jun 28;86:27-34. doi: 10.1016/j.visres.2013.04.004. Epub 2013 Apr 15. Vision Res. 2013. PMID: 23597582
-
Crystalline lens gradient refractive index distribution in the guinea pig.Ophthalmic Physiol Opt. 2020 May;40(3):308-315. doi: 10.1111/opo.12667. Ophthalmic Physiol Opt. 2020. PMID: 32338776
-
Contribution of shape and gradient refractive index to the spherical aberration of isolated human lenses.Invest Ophthalmol Vis Sci. 2014 Apr 21;55(4):2599-607. doi: 10.1167/iovs.14-14201. Invest Ophthalmol Vis Sci. 2014. PMID: 24677101
-
The cause and consequence of fiber cell compaction in the vertebrate lens.Exp Eye Res. 2017 Mar;156:50-57. doi: 10.1016/j.exer.2016.03.009. Epub 2016 Mar 15. Exp Eye Res. 2017. PMID: 26992780 Free PMC article. Review.
-
The optical properties of the crystalline lens and their significance.Clin Exp Optom. 2003 Jan;86(1):3-18. Clin Exp Optom. 2003. PMID: 12568647 Review.
Cited by
-
Paraxial equivalent of the gradient-index lens of the human eye.Biomed Opt Express. 2022 Sep 6;13(10):5131-5150. doi: 10.1364/BOE.464121. eCollection 2022 Oct 1. Biomed Opt Express. 2022. PMID: 36425626 Free PMC article.
-
Investigation of the scattering and attenuation properties of cataracts formed in mouse eyes with 1060-nm and 1310-nm swept-source optical coherence tomography.Biomed Opt Express. 2021 Sep 20;12(10):6391-6406. doi: 10.1364/BOE.433927. eCollection 2021 Oct 1. Biomed Opt Express. 2021. PMID: 34745744 Free PMC article.
-
Influence of shape and gradient refractive index in the accommodative changes of spherical aberration in nonhuman primate crystalline lenses.Invest Ophthalmol Vis Sci. 2013 Sep 11;54(9):6197-207. doi: 10.1167/iovs.13-11996. Invest Ophthalmol Vis Sci. 2013. PMID: 23927893 Free PMC article.
-
In vivo SS-OCT imaging of crystalline lens sutures.Biomed Opt Express. 2020 Sep 2;11(10):5388-5400. doi: 10.1364/BOE.401254. eCollection 2020 Oct 1. Biomed Opt Express. 2020. PMID: 33149958 Free PMC article.
-
Optical coherence tomography quantifies gradient refractive index and mechanical stiffness gradient across the human lens.Commun Med (Lond). 2024 Aug 12;4(1):162. doi: 10.1038/s43856-024-00578-9. Commun Med (Lond). 2024. PMID: 39134623 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources