1.05-GHz CMOS oscillator based on lateral- field-excited piezoelectric AlN contour- mode MEMS resonators
- PMID: 20040430
- DOI: 10.1109/TUFFC.1382
1.05-GHz CMOS oscillator based on lateral- field-excited piezoelectric AlN contour- mode MEMS resonators
Abstract
This paper reports on the first demonstration of a 1.05-GHz microelectromechanical (MEMS) oscillator based on lateral-field-excited (LFE) piezoelectric AlN contourmode resonators. The oscillator shows a phase noise level of -81 dBc/Hz at 1-kHz offset frequency and a phase noise floor of -146 dBc/Hz, which satisfies the global system for mobile communications (GSM) requirements for ultra-high frequency (UHF) local oscillators (LO). The circuit was fabricated in the AMI semiconductor (AMIS) 0.5-microm complementary metaloxide- semiconductor (CMOS) process, with the oscillator core consuming only 3.5 mW DC power. The device overall performance has the best figure-of-merit (FoM) when compared with other gigahertz oscillators that are based on film bulk acoustic resonator (FBAR), surface acoustic wave (SAW), and CMOS on-chip inductor and capacitor (CMOS LC) technologies. A simple 2-mask process was used to fabricate the LFE AlN resonators operating between 843 MHz and 1.64 GHz with simultaneously high Q (up to 2,200) and kt 2 (up to 1.2%). This process further relaxes manufacturing tolerances and improves yield. All these advantages make these devices suitable for post-CMOS integrated on-chip direct gigahertz frequency synthesis in reconfigurable multiband wireless communications.
Similar articles
-
Super-high-frequency two-port AlN contour-mode resonators for RF applications.IEEE Trans Ultrason Ferroelectr Freq Control. 2010 Jan;57(1):38-45. doi: 10.1109/TUFFC.2010.1376. IEEE Trans Ultrason Ferroelectr Freq Control. 2010. PMID: 20040424
-
Micromachined thin film plate acoustic wave resonators (FPAR): Part II.IEEE Trans Ultrason Ferroelectr Freq Control. 2009 Dec;56(12):2701-10. doi: 10.1109/TUFFC.2009.1361. IEEE Trans Ultrason Ferroelectr Freq Control. 2009. PMID: 20040407
-
Low-phase-noise frequency synthesizer for the trapped atom clock on a chip.IEEE Trans Ultrason Ferroelectr Freq Control. 2010 Jan;57(1):88-93. doi: 10.1109/TUFFC.2010.1383. IEEE Trans Ultrason Ferroelectr Freq Control. 2010. PMID: 20040431
-
Miniaturized sensors for the viscosity and density of liquids--performance and issues.IEEE Trans Ultrason Ferroelectr Freq Control. 2010 Jan;57(1):111-20. doi: 10.1109/TUFFC.2010.1386. IEEE Trans Ultrason Ferroelectr Freq Control. 2010. PMID: 20040434 Review.
-
Acoustic wave based MEMS devices for biosensing applications.Biosens Bioelectron. 2012 Mar 15;33(1):1-9. doi: 10.1016/j.bios.2011.12.041. Epub 2012 Jan 16. Biosens Bioelectron. 2012. PMID: 22310157 Review.
Cited by
-
A Sub-mW 18-MHz MEMS Oscillator Based on a 98-dBΩ Adjustable Bandwidth Transimpedance Amplifier and a Lamé-Mode Resonator.Sensors (Basel). 2019 Jun 13;19(12):2680. doi: 10.3390/s19122680. Sensors (Basel). 2019. PMID: 31200575 Free PMC article.
-
Micromachined Resonators: A Review.Micromachines (Basel). 2016 Sep 8;7(9):160. doi: 10.3390/mi7090160. Micromachines (Basel). 2016. PMID: 30404333 Free PMC article. Review.
-
Noise as Diagnostic Tool for Quality and Reliability of MEMS.Sensors (Basel). 2021 Feb 22;21(4):1510. doi: 10.3390/s21041510. Sensors (Basel). 2021. PMID: 33671582 Free PMC article.
-
Self-biased 215 MHz magnetoelectric NEMS resonator for ultra-sensitive DC magnetic field detection.Sci Rep. 2013;3:1985. doi: 10.1038/srep01985. Sci Rep. 2013. PMID: 23760520 Free PMC article.
-
Design of a MEMS-Based Oscillator Using 180nm CMOS Technology.PLoS One. 2016 Jul 8;11(7):e0158954. doi: 10.1371/journal.pone.0158954. eCollection 2016. PLoS One. 2016. PMID: 27391136 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources