Live imaging of radiation-induced apoptosis by yolk injection of Acridine Orange in the developing optic tectum of medaka - PubMed Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Nov;50(6):487-94.
doi: 10.1269/jrr.09043. Epub 2009 Aug 13.

Live imaging of radiation-induced apoptosis by yolk injection of Acridine Orange in the developing optic tectum of medaka

Affiliations
Free article

Live imaging of radiation-induced apoptosis by yolk injection of Acridine Orange in the developing optic tectum of medaka

Takako Yasuda et al. J Radiat Res. 2009 Nov.
Free article

Abstract

To observe the sequential radiation-induced apoptosis in a living embryo, we injected Acridine Orange (AO) solution into the yolk of embryo and visualized radiation-induced apoptosis in developing optic tectum (OT). Medaka embryos at stage 28, when neural cells proliferate rapidly in the OT, were irradiated with 5 Gy X-rays which is a non-lethal dose for irradiated embryos at hatching. The irradiated embryos hatched normally without morphological abnormalities in their brains, even though a large number of apoptotic cells were induced transiently in OT. By yolk injection, apoptotic cells in OT were distinguished as AO-positive small nuclei at 3 h after irradiation. At 8-10 h after irradiation, AO-positive rosette-shaped clusters were obviously distinguished in marginal tectal regions of OT where cells are proliferating intensely. The AO-positive clusters became bigger and more obvious, but the number did not increase up to 24 h after irradiation and completely disappeared up to 49 h after irradiation. This characteristic appearance of the AO-positive nuclei/clusters is in good agreement with our previous results, based on the examination of fixed specimens stained with AO by injection into the peri-vitelline space, suggesting that the AO-yolk injection method is highly reliable for detecting apoptotic cells in living embryos. The live imaging of apoptotic cells in developing Medaka embryos by AO-yolk injection method is expected to reveal more of the details of the dynamics of apoptotic responses in the irradiated brain and other tissues.

PubMed Disclaimer

Similar articles

Cited by

Substances