Face recognition/detection by probabilistic decision-based neural network - PubMed Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997;8(1):114-32.
doi: 10.1109/72.554196.

Face recognition/detection by probabilistic decision-based neural network

Affiliations

Face recognition/detection by probabilistic decision-based neural network

S H Lin et al. IEEE Trans Neural Netw. 1997.

Abstract

This paper proposes a face recognition system, based on probabilistic decision-based neural networks (PDBNN). With technological advance on microelectronic and vision system, high performance automatic techniques on biometric recognition are now becoming economically feasible. Among all the biometric identification methods, face recognition has attracted much attention in recent years because it has potential to be most nonintrusive and user-friendly. The PDBNN face recognition system consists of three modules: First, a face detector finds the location of a human face in an image. Then an eye localizer determines the positions of both eyes in order to generate meaningful feature vectors. The facial region proposed contains eyebrows, eyes, and nose, but excluding mouth (eye-glasses will be allowed). Lastly, the third module is a face recognizer. The PDBNN can be effectively applied to all the three modules. It adopts a hierarchical network structures with nonlinear basis functions and a competitive credit-assignment scheme. The paper demonstrates a successful application of PDBNN to face recognition applications on two public (FERET and ORL) and one in-house (SCR) databases. Regarding the performance, experimental results on three different databases such as recognition accuracies as well as false rejection and false acceptance rates are elaborated. As to the processing speed, the whole recognition process (including PDBNN processing for eye localization, feature extraction, and classification) consumes approximately one second on Sparc10, without using hardware accelerator or co-processor.

PubMed Disclaimer

Similar articles

Cited by