Effects of ambient particles and carbon monoxide on supraventricular arrhythmias in a rat model of myocardial infarction - PubMed Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Dec;18(14):1077-82.
doi: 10.1080/08958370600945473.

Effects of ambient particles and carbon monoxide on supraventricular arrhythmias in a rat model of myocardial infarction

Affiliations

Effects of ambient particles and carbon monoxide on supraventricular arrhythmias in a rat model of myocardial infarction

Gregory A Wellenius et al. Inhal Toxicol. 2006 Dec.

Abstract

The association between short-term increases in particulate air pollution and increased cardiovascular morbidity and mortality is well documented. Recent studies suggest an association between particulate matter with aerodynamic diameter < 2.5 microm (PM2.5) and supraventricular arrhythmias (SVA), but the results have been inconsistent. We evaluated this hypothesis in a rat model of acute myocardial infarction (AMI). Diazepam-sedated Sprague-Dawley rats with AMI were exposed (1 h) to either filtered air (n = 16), concentrated ambient fine particles (CAPS; mean = 645.7 microg/m3; n = 23), carbon monoxide (CO; 35 ppm; n = 19), or CAPs and CO (n = 24). Each exposure was immediately preceded and followed by a 1-h exposure to filtered air (baseline and postexposure periods, respectively). Surface electrocardiograms were recorded and the frequency of supraventricular premature beats was quantified. Among rats in the CAPS group, the probability of observing any SVA decreased from baseline to the exposure and postexposure periods. This pattern was significantly different than that observed for the filtered air group during the exposure period (p = .048) only. In the subset of rats with one or more SVA during the baseline period, the change in SVA rate from baseline to exposure period was significantly lower in the CAPS (p = .04) and CO (p = .007) groups only, as compared to the filtered air group. No significant effects were observed in the group simultaneously exposed to CAPS and CO. Thus, the results of this study do not support the hypothesis that exposure to ambient air pollution increases the risk or frequency of supraventricular arrhythmias.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources