Neural plasticity and bilateral movements: A rehabilitation approach for chronic stroke - PubMed Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2005 Apr;75(5):309-20.
doi: 10.1016/j.pneurobio.2005.04.001.

Neural plasticity and bilateral movements: A rehabilitation approach for chronic stroke

Affiliations
Review

Neural plasticity and bilateral movements: A rehabilitation approach for chronic stroke

James H Cauraugh et al. Prog Neurobiol. 2005 Apr.

Abstract

Stroke interferes with voluntary control of motor actions. Although spontaneous recovery of function can occur, restoration of normal motor function in the hemiplegic upper limb is noted in fewer than 15% of individuals. However, there is increasing evidence to suggest that in addition to injury-related reorganization, motor cortex functions can be altered by individual motor experiences. Such neural plasticity has major implications for the type of rehabilitative training administered post-stroke. This review proposes that noteworthy upper extremity gains toward motor recovery evolve from activity-dependent intervention based on theoretical motor control constructs and interlimb coordination principles. Founded on behavioral and neurophysiological mechanisms, bilateral movement training/practice has shown great promise in expediting progress toward chronic stroke recovery in the upper extremity. Planning and executing bilateral movements post-stroke may facilitate cortical neural plasticity by three mechanisms: (a) motor cortex disinhibition that allows increased use of the spared pathways of the damaged hemisphere, (b) increased recruitment of the ipsilateral pathways from the contralesional or contralateral hemisphere to supplement the damaged crossed corticospinal pathways, and (c) upregulation of descending premotorneuron commands onto propriospinal neurons.

PubMed Disclaimer

Similar articles

Cited by

Publication types