Gene regulation at the single-cell level
- PMID: 15790856
- DOI: 10.1126/science.1106914
Gene regulation at the single-cell level
Abstract
The quantitative relation between transcription factor concentrations and the rate of protein production from downstream genes is central to the function of genetic networks. Here we show that this relation, which we call the gene regulation function (GRF), fluctuates dynamically in individual living cells, thereby limiting the accuracy with which transcriptional genetic circuits can transfer signals. Using fluorescent reporter genes and fusion proteins, we characterized the bacteriophage lambda promoter P(R) in Escherichia coli. A novel technique based on binomial errors in protein partitioning enabled calibration of in vivo biochemical parameters in molecular units. We found that protein production rates fluctuate over a time scale of about one cell cycle, while intrinsic noise decays rapidly. Thus, biochemical parameters, noise, and slowly varying cellular states together determine the effective single-cell GRF. These results can form a basis for quantitative modeling of natural gene circuits and for design of synthetic ones.
Comment in
-
Molecular biology. Signal processing in single cells.Science. 2005 Mar 25;307(5717):1886-8. doi: 10.1126/science.1110797. Science. 2005. PMID: 15790834 No abstract available.
Similar articles
-
Noise propagation in gene networks.Science. 2005 Mar 25;307(5717):1965-9. doi: 10.1126/science.1109090. Science. 2005. PMID: 15790857
-
Molecular biology. Signal processing in single cells.Science. 2005 Mar 25;307(5717):1886-8. doi: 10.1126/science.1110797. Science. 2005. PMID: 15790834 No abstract available.
-
Stochastic gene expression in a single cell.Science. 2002 Aug 16;297(5584):1183-6. doi: 10.1126/science.1070919. Science. 2002. PMID: 12183631
-
Global regulators of transcription in Escherichia coli: mechanisms of action and methods for study.Adv Appl Microbiol. 2008;65:93-113. doi: 10.1016/S0065-2164(08)00604-7. Adv Appl Microbiol. 2008. PMID: 19026863 Review. No abstract available.
-
Flagellar biosynthesis in silico: building quantitative models of regulatory networks.Cell. 2004 Jun 11;117(6):689-90. doi: 10.1016/j.cell.2004.05.020. Cell. 2004. PMID: 15186769 Review.
Cited by
-
Inherent regulatory asymmetry emanating from network architecture in a prevalent autoregulatory motif.Elife. 2020 Aug 18;9:e56517. doi: 10.7554/eLife.56517. Elife. 2020. PMID: 32808926 Free PMC article.
-
Size sensors in bacteria, cell cycle control, and size control.Front Microbiol. 2015 May 29;6:515. doi: 10.3389/fmicb.2015.00515. eCollection 2015. Front Microbiol. 2015. PMID: 26074903 Free PMC article. Review.
-
Interplay between intrinsic noise and the stochasticity of the cell cycle in bacterial colonies.Biophys J. 2010 Jun 2;98(11):2459-68. doi: 10.1016/j.bpj.2010.02.045. Biophys J. 2010. PMID: 20513389 Free PMC article.
-
The role of physiological heterogeneity in microbial population behavior.Nat Chem Biol. 2010 Oct;6(10):705-12. doi: 10.1038/nchembio.436. Epub 2010 Sep 17. Nat Chem Biol. 2010. PMID: 20852608 Review.
-
Non-genetic cell-to-cell variability and the consequences for pharmacology.Curr Opin Chem Biol. 2009 Dec;13(5-6):556-61. doi: 10.1016/j.cbpa.2009.09.015. Epub 2009 Oct 14. Curr Opin Chem Biol. 2009. PMID: 19833543 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
Miscellaneous