Optimal spatial filtering of single trial EEG during imagined hand movement
- PMID: 11204034
- DOI: 10.1109/86.895946
Optimal spatial filtering of single trial EEG during imagined hand movement
Abstract
The development of an electroencephalograph (EEG)-based brain-computer interface (BCI) requires rapid and reliable discrimination of EEG patterns, e.g., associated with imaginary movement. One-sided hand movement imagination results in EEG changes located at contra- and ipsilateral central areas. We demonstrate that spatial filters for multichannel EEG effectively extract discriminatory information from two populations of single-trial EEG, recorded during left- and right-hand movement imagery. The best classification results for three subjects are 90.8%, 92.7%, and 99.7%. The spatial filters are estimated from a set of data by the method of common spatial patterns and reflect the specific activation of cortical areas. The method performs a weighting of the electrodes according to their importance for the classification task. The high recognition rates and computational simplicity make it a promising method for an EEG-based brain-computer interface.
Similar articles
-
Real-time EEG analysis with subject-specific spatial patterns for a brain-computer interface (BCI).IEEE Trans Rehabil Eng. 2000 Dec;8(4):447-56. doi: 10.1109/86.895947. IEEE Trans Rehabil Eng. 2000. PMID: 11204035 Clinical Trial.
-
BCI Competition 2003--Data set III: probabilistic modeling of sensorimotor mu rhythms for classification of imaginary hand movements.IEEE Trans Biomed Eng. 2004 Jun;51(6):1077-80. doi: 10.1109/TBME.2004.827076. IEEE Trans Biomed Eng. 2004. PMID: 15188882
-
Classification of single trial EEG during imagined hand movement by rhythmic component extraction.Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:2482-5. doi: 10.1109/IEMBS.2009.5334806. Annu Int Conf IEEE Eng Med Biol Soc. 2009. PMID: 19964966
-
Functional source separation and hand cortical representation for a brain-computer interface feature extraction.J Physiol. 2007 May 1;580(Pt.3):703-21. doi: 10.1113/jphysiol.2007.129163. Epub 2007 Mar 1. J Physiol. 2007. PMID: 17331989 Free PMC article. Review.
-
Brain-computer communication based on the dynamics of brain oscillations.Suppl Clin Neurophysiol. 2004;57:583-91. doi: 10.1016/s1567-424x(09)70398-8. Suppl Clin Neurophysiol. 2004. PMID: 16106660 Review.
Cited by
-
Partial prior transfer learning based on self-attention CNN for EEG decoding in stroke patients.Sci Rep. 2024 Nov 15;14(1):28170. doi: 10.1038/s41598-024-79202-8. Sci Rep. 2024. PMID: 39548177 Free PMC article.
-
Steady-State Visual Evoked Potential-Based Brain-Computer Interface System for Enhanced Human Activity Monitoring and Assessment.Sensors (Basel). 2024 Nov 3;24(21):7084. doi: 10.3390/s24217084. Sensors (Basel). 2024. PMID: 39517980 Free PMC article.
-
Significance of EEG-electrode combinations while calculating filters with common spatial patterns.Ger Med Sci. 2024 Sep 25;22:Doc08. doi: 10.3205/000334. eCollection 2024. Ger Med Sci. 2024. PMID: 39386391 Free PMC article.
-
Improved motor imagery training for subject's self-modulation in EEG-based brain-computer interface.Front Hum Neurosci. 2024 Aug 26;18:1447662. doi: 10.3389/fnhum.2024.1447662. eCollection 2024. Front Hum Neurosci. 2024. PMID: 39253067 Free PMC article.
-
Motor Imagery EEG Signal Classification Using Distinctive Feature Fusion with Adaptive Structural LASSO.Sensors (Basel). 2024 Jun 9;24(12):3755. doi: 10.3390/s24123755. Sensors (Basel). 2024. PMID: 38931540 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical