Computer Science ›› 2019, Vol. 46 ›› Issue (9): 85-92.doi: 10.11896/j.issn.1002-137X.2019.09.011
• NDBC 2018 • Previous Articles Next Articles
ZHANG Bin-bin, WANG Juan, YUE Kun, WU Hao, HAO Jia
CLC Number:
[1]KUNDU S,RANGASWAMI R,DUTTA K.Application per-formance modeling in a virtualized environment[C]//16th International Symposium on High Performance Computer Architecture (HPCA).2010. [2]BROSIG F,GORSLER F,HUBER N.Evaluating Approaches for Performance Prediction in Virtualized Environments[C]//Proceedings of 21st International symposium on Modeling,Analysis and Simulation of Computer and Telecommunication Systems.2013. [3]KRAFT S,CASALE G,KRISHNAMURTHY D.I/O perfor-mance prediction in consolidated virtualized environments[J].Acm Sigmetrics Performance Evaluation Review,2011,39(3):17-18. [4]MENG F,DU G,HE H.Performance Modeling on the Basis of Application Type in Virtualized Environments[J].Journal of Software,2013,8(11):2847-2854. [5]LI F Z,YANG D,ZHOU P,et al.Modeling Application Performance in a Virtualized Environment[J].Computer Systems &Applications,2015,24(9):9-15.(in Chinese)黎丰泽,杨达,周鹏,等.虚拟环境下虚拟机应用性能建模[J].计算机系统应用,2015,24(9):9-15. [6]贝振东,喻之斌,熊文,等.一种云计算系统中虚拟机的性能预测方法及系统:中国,CN104536829A[P].2018-04-22. [7]CHEIKH B,DONCEL J,BRUN O,et al.Predicting ResponseTimes of Applications in Virtualized Environments[J].International Journal of Humanoid Robotics,2016,12(3):83-90. [8]XU J,FORTES J A.Multi-objective virtual machine placement in virtualized data center environments[C]//IEEE/ACM International Conference on Green Computing and Communications &International Conference on Cyber,Physical and Social Computing.2010. [9]WU G,TANG M,TIAN Y C,et al.Energy-efficient virtual machine placement in data centers by genetic algorithm[C]//Neural Information Processing.Springer,2012:315-323. [10]TANG M,PAN S,A Hybrid Genetic Algorithm for the Energy-Efficient Virtual Machine Placement Problem in Data Centers[J].Neural Processing Letters,2015,41(2):211-221. [11]YANG T,LEE Y C,ZOMAYA A Y.Energy-Efficient DataCenter Networks Planning with Virtual Machine Placement and Traffic Configuration[J].IEEE 6th International Conference on Cloud Computing Technology and Science.2014. [12]KAAOUACHE M A,BOUAMAMA S.Solving bin PackingProblem with a Hybrid Genetic Algorithm for VM Placement in Cloud[J].Procedia Computer Science,2015,60(1):1061-1069. [13]JIANG B,LI R,et al.An improved genetic algorithm for loadbalance in multiprocessor systems[C]//Proceedings of the 14th International Conference on Advanced Communication Techno-logy.2012. [14]WANG T,LIU Z,CHEN Y,et al.Load balancing task scheduling based on genetic algorithm in cloud computing[C]//Proceedings of 12th International Conference on Dependable,Autonomic and Secure Computing.2014. [15]SUNDARARAJAN P K,FELLERY E,FORGEATY J,et al.A Constrained Genetic Algorithm for Rebalancing of Services in Cloud Data Centers[C]//Proceedings of the 8th International Conference on Cloud Computing.2015. [16]MI H B,WANG H M,YIN G,et al.Resource On-DemandReconfiguration Method for Virtualized Data Centers[J].Journal of Software,2011,22(9):2193-2205.(in Chihese)米海波,王怀民,尹刚,等.一种面向虚拟化数字中心资源按需重配置方法[J].软件学报,2011,22(9):2193-2205. |
[1] | WANG Run-an, ZOU Zhao-nian. Query Performance Prediction Based on Physical Operation-level Models [J]. Computer Science, 2022, 49(8): 49-55. |
[2] | GAO Zhen-zhuo, WANG Zhi-hai, LIU Hai-yang. Random Shapelet Forest Algorithm Embedded with Canonical Time Series Features [J]. Computer Science, 2022, 49(7): 40-49. |
[3] | HU Yan-yu, ZHAO Long, DONG Xiang-jun. Two-stage Deep Feature Selection Extraction Algorithm for Cancer Classification [J]. Computer Science, 2022, 49(7): 73-78. |
[4] | YANG Hao-xiong, GAO Jing, SHAO En-lu. Vehicle Routing Problem with Time Window of Takeaway Food ConsideringOne-order-multi-product Order Delivery [J]. Computer Science, 2022, 49(6A): 191-198. |
[5] | QUE Hua-kun, FENG Xiao-feng, LIU Pan-long, GUO Wen-chong, LI Jian, ZENG Wei-liang, FAN Jing-min. Application of Grassberger Entropy Random Forest to Power-stealing Behavior Detection [J]. Computer Science, 2022, 49(6A): 790-794. |
[6] | JIANG Cheng-man, HUA Bao-jian, FAN Qi-liang, ZHU Hong-jun, XU Bo, PAN Zhi-zhong. Empirical Security Study of Native Code in Python Virtual Machines [J]. Computer Science, 2022, 49(6A): 474-479. |
[7] | WANG Wen-qiang, JIA Xing-xing, LI Peng. Adaptive Ensemble Ordering Algorithm [J]. Computer Science, 2022, 49(6A): 242-246. |
[8] | ZHAO Hang, TONG Shui-guang, ZHU Zheng-zhou. Prediction Method of Structural Static Performance Based on Data Learning [J]. Computer Science, 2022, 49(4): 140-143. |
[9] | ZHANG Xiao-qing, FANG Jian-sheng, XIAO Zun-jie, CHEN Bang, Risa HIGASHITA, CHEN Wan, YUAN Jin, LIU Jiang. Classification Algorithm of Nuclear Cataract Based on Anterior Segment Coherence Tomography Image [J]. Computer Science, 2022, 49(3): 204-210. |
[10] | GAO Shi-yao, CHEN Yan-li, XU Yu-lan. Expressive Attribute-based Searchable Encryption Scheme in Cloud Computing [J]. Computer Science, 2022, 49(3): 313-321. |
[11] | SHEN Biao, SHEN Li-wei, LI Yi. Dynamic Task Scheduling Method for Space Crowdsourcing [J]. Computer Science, 2022, 49(2): 231-240. |
[12] | LIU Zhen-yu, SONG Xiao-ying. Multivariate Regression Forest for Categorical Attribute Data [J]. Computer Science, 2022, 49(1): 108-114. |
[13] | YANG Xiao-qin, LIU Guo-jun, GUO Jian-hui, MA Wen-tao. Full Reference Color Image Quality Assessment Method Based on Spatial and Frequency Domain Joint Features with Random Forest [J]. Computer Science, 2021, 48(8): 99-105. |
[14] | WU Shan-jie, WANG Xin. Prediction of Tectonic Coal Thickness Based on AGA-DBSCAN Optimized RBF Neural Networks [J]. Computer Science, 2021, 48(7): 308-315. |
[15] | ZHENG Jian-hua, LI Xiao-min, LIU Shuang-yin, LI Di. Improved Random Forest Imbalance Data Classification Algorithm Combining Cascaded Up-sampling and Down-sampling [J]. Computer Science, 2021, 48(7): 145-154. |
|