Computer Science ›› 2018, Vol. 45 ›› Issue (9): 288-293.doi: 10.11896/j.issn.1002-137X.2018.09.048
• Graphics, Image & Pattern Recognition • Previous Articles Next Articles
XU Jia-qing1, WAN Wen2, LV Qi3
CLC Number:
[1]JOSE M B,ANTONIO P,GUSTAU C V,et al.Hyperspectral Remote Sensing Data Analysis and Future Challenges [J].IEEE Geoscience and Remote Sensing Magazine,2013,1(2):6-36. [2]张良培,杜博,张乐飞.高光谱遥感影像处理[M].北京:科学出版社,2014. [3]OLSHAUSEN B A,FIELD D J.Emergence of simple-cell receptive field properties by learning a sparse code for natural images [J].Nature,1996,381(6583):607-609. [4]CHEN Y,NASRABADI N M,TRAN T D.Hyperspectral image classification using dictionary-based sparse representation [J].IEEE Transactions on Geoscience and Remote Sensing,2011,49(10):3973-3985. [5]YUAN H L,TANG Y Y,LU Y,et al.Hyperspectral Image Classification Based on Regularized Sparse Representation [J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2014,7(6):2174-2182. [6]CUI M,PRASAD S.Class-Dependent Sparse Representation Classifier for Robust Hyperspectral Image Classification [J].IEEE Transactions on Geoscience and Remote Sensing,2015,53(5):2683-2695. [7]SONG X F,JIAO L C.Classification of Hyperspectral Remote Sensing Image Based on Sparse Representation and Spectral Information [J].Journal of Electronics and Information Technology,2012,34(2):268-272.(in Chinese) 宋相法,焦李成.基于稀疏表示及光谱信息的高光谱遥感图像分类[J].电子与信息学报,2012,34(2):268-272. [8]ROBERT T.Regression shrinkage and selection via the lasso [J].Journal of the Royal Statistical Society,Series B(Methodological),1996,58(1):267-288. [9]ELAD M.Sparse and Redundant Representations [M].Heidelberg:Springer,2010. [10]CHARLES A S,OLSHAUSEN B A,ROZELL C J.Learning sparse codes for hyperspectral imagery [J].IEEE Journal of Selected Topics in Signal Processing,2011,5(5):963-978. [11]CASTRODAD A,XING Z,GREER J B,et al.Learning discriminative sparse representation for modeling,source separation,and mapping of hyperspectral imagery [J].IEEE Transactions on Geoscience and Remote Sensing,2011,49(11):4263-4281. [12]ALI S F,HAMID R R,SEYYED A H.Spatial-Aware Dictio-nary Learning for Hyperspectral Image Classification [J].IEEE Transactions on Geoscience and Remote Sensing,2011,53(1):527-541. [13]MAIRAL J,BACH F,PONCE J,et al.Online learning for matrix factorization and sparse coding [J].Journal of Machine Learning Research,2010,11:19-60. [14]CHANG C C,LIN C J.LIBSVM:A library for support vector machines [J].ACM Transactions on Intelligent Systems and Technology,2011,2(3):1-27. [15]YANG J C,YU K,GONG Y H,et al.Linear Spatial Pyramid Matching using Sparse Coding for Image Classification [C]∥Proceedings of 2009 IEEE Conference on Computer Vision and Pattern Recognition(CVPR).2009:1794-1801. [16]CULPEPPER B J,SOHL D J,OLSHAUSEN B A.Building a better probabilistic model of images by factorization[C]∥Proceedings of 2011 International Conference on Computer Vision(ICCV).2011:2011-2017. [17]罗小波,赵春晖,潘建平,等.遥感图像智能分类及其应用[M].北京:电子工业出版社,2011. [18]中国科学院空间应用工程与技术中心.载人航天空间应用数据推广服务平台[EB/OL].http://www.msadc.cn/t1-cms/t1/dataProduct/dataProduct_dxyb_list.jsp. [19]UPV/EHU.Hyperspectral Remote Sensing Scenes[EB/OL]. http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes. [20]KRZYWINSKI M.Circos[EB/OL].http://circos.ca. |
[1] | CHEN Zhi-qiang, HAN Meng, LI Mu-hang, WU Hong-xin, ZHANG Xi-long. Survey of Concept Drift Handling Methods in Data Streams [J]. Computer Science, 2022, 49(9): 14-32. |
[2] | ZHOU Xu, QIAN Sheng-sheng, LI Zhang-ming, FANG Quan, XU Chang-sheng. Dual Variational Multi-modal Attention Network for Incomplete Social Event Classification [J]. Computer Science, 2022, 49(9): 132-138. |
[3] | HAO Zhi-rong, CHEN Long, HUANG Jia-cheng. Class Discriminative Universal Adversarial Attack for Text Classification [J]. Computer Science, 2022, 49(8): 323-329. |
[4] | WU Hong-xin, HAN Meng, CHEN Zhi-qiang, ZHANG Xi-long, LI Mu-hang. Survey of Multi-label Classification Based on Supervised and Semi-supervised Learning [J]. Computer Science, 2022, 49(8): 12-25. |
[5] | TAN Ying-ying, WANG Jun-li, ZHANG Chao-bo. Review of Text Classification Methods Based on Graph Convolutional Network [J]. Computer Science, 2022, 49(8): 205-216. |
[6] | YAN Jia-dan, JIA Cai-yan. Text Classification Method Based on Information Fusion of Dual-graph Neural Network [J]. Computer Science, 2022, 49(8): 230-236. |
[7] | GAO Zhen-zhuo, WANG Zhi-hai, LIU Hai-yang. Random Shapelet Forest Algorithm Embedded with Canonical Time Series Features [J]. Computer Science, 2022, 49(7): 40-49. |
[8] | YANG Bing-xin, GUO Yan-rong, HAO Shi-jie, Hong Ri-chang. Application of Graph Neural Network Based on Data Augmentation and Model Ensemble in Depression Recognition [J]. Computer Science, 2022, 49(7): 57-63. |
[9] | ZHANG Hong-bo, DONG Li-jia, PAN Yu-biao, HSIAO Tsung-chih, ZHANG Hui-zhen, DU Ji-xiang. Survey on Action Quality Assessment Methods in Video Understanding [J]. Computer Science, 2022, 49(7): 79-88. |
[10] | SHAO Xin-xin. TI-FastText Automatic Goods Classification Algorithm [J]. Computer Science, 2022, 49(6A): 206-210. |
[11] | CHEN Jing-nian. Acceleration of SVM for Multi-class Classification [J]. Computer Science, 2022, 49(6A): 297-300. |
[12] | YANG Jian-nan, ZHANG Fan. Classification Method for Small Crops Combining Dual Attention Mechanisms and Hierarchical Network Structure [J]. Computer Science, 2022, 49(6A): 353-357. |
[13] | YANG Han, WAN You, CAI Jie-xuan, FANG Ming-yu, WU Zhuo-chao, JIN Yang, QIAN Wei-xing. Pedestrian Navigation Method Based on Virtual Inertial Measurement Unit Assisted by GaitClassification [J]. Computer Science, 2022, 49(6A): 759-763. |
[14] | DU Li-jun, TANG Xi-lu, ZHOU Jiao, CHEN Yu-lan, CHENG Jian. Alzheimer's Disease Classification Method Based on Attention Mechanism and Multi-task Learning [J]. Computer Science, 2022, 49(6A): 60-65. |
[15] | LI Xiao-wei, SHU Hui, GUANG Yan, ZHAI Yi, YANG Zi-ji. Survey of the Application of Natural Language Processing for Resume Analysis [J]. Computer Science, 2022, 49(6A): 66-73. |
|