Collaborative Filtering Recommendation Algorithm Based on Multi-level Item Similarity

Computer Science ›› 2016, Vol. 43 ›› Issue (10): 262-265.doi: 10.11896/j.issn.1002-137X.2016.10.049

Previous Articles     Next Articles

Collaborative Filtering Recommendation Algorithm Based on Multi-level Item Similarity

XU Xiang-yu and LIU Jian-ming   

  • Online:2018-12-01 Published:2018-12-01

Abstract: For the defects in the calculation of item similarity of traditional item-based collaborative filtering,this paper proposed an improved collaborative filtering algorithm based on multi-level item similarity.Firstly,the multi-dimensio-nal heuristic methods are used to analyze the similarity of items comprehensively by analyzing user’s behavior records in four aspects,including user collective rating items,user activity,user rating timeliness and user rating.Secondly,based on the four aspects of item similarity,a method for calculating multi-level item similarity is designed.Experimental results show that,compared with the traditional item-based collaborative filtering recommendation algorithm,the algorithm based on multi-level item similarity has higher recommendation accuracy rate and recall rate,and lower MAE va-lue.

Key words: Collaborative filtering,Heuristic methods,Multilevel,Item similarity

[1] Xu Hai-ling,Wu Xiao,Li Xiao-dong,et al.Comparison Study of Internet Recommendation System[J].Journal of Software,2009,20(2):350-362(in Chinese) 许海玲,吴潇,李晓东,等.互联网推荐系统比较研究[J].软件学报,2009,20(2):350-362
[2] Linden G,Smith B,York J.Amazon.com recommendations:I-tem-to-item collaborative filtering[J].Internet Computing,IEEE,2003,7(1):76-80
[3] Sarwar B,Karypis G,Konstan J,et al.Item-based collaborative filtering recommendation algorithms[C]∥Proceedings of the 10th international conference on World Wide Web.ACM,2001:285-295
[4] Deng Ai-lin,Zhu Yang-yong,Shi Bo-le.A Collaborative Filtering Recommendation Algorithm Based on Item Rating Prediction[J].Journal of Software,2003,14(9):1621-1628(in Chinese) 邓爱林,朱扬勇,施伯乐.基于项目评分预测的协同过滤推荐算法[J].软件学报,2003,14(9):1621-1628
[5] Sun Guang-ming,Wang Shuo.Novel collaborative filtering algorithm based on interest degree of item[J].Application Research of Computers,2013,30(12):3618-3621(in Chinese) 孙光明,王硕.基于项目兴趣度的协同过滤新算法[J].计算机应用研究,2013,30(12):3618-3621
[6] Wang Wei-ping,Wang Jin-hui.Hybrid Recommendation Method Based on Tag and Collaborative Filtering[J].Computer Engineering,2011,37(14):34-35(in Chinese) 王卫平,王金辉.基于Tag和协同过滤的混合推荐方法[J].计算机工程,2011,37(14):34-35
[7] Xu Zhi-hong,Wang Bao-ying.Collaborative filtering algorithmbased on item complex similarity[J].Application Research of Computers,2014,31(2):398-400(in Chinese) 许智宏,王宝莹.基于项目综合相似度的协同过滤算法[J].计算机应用研究,2014,31(2):398-400
[8] Wang Bing-yi,Liu Yang,Nie Chang-xin.Personalized Recom- mendation Algorithm Based on Three-dimensional User Interest Modeling[J].Computer Engineering,2015,41(1):65-70(in Chinese) 王冰怡,刘杨,聂长新.基于用户兴趣三维建模的个性化推荐算法[J].计算机工程,2015,41(1):65-70
[9] Fang Jun-ming.Development and Challenge for Cognitive Psy-chology of Information process[J].Psychological Science,1998,21(6):481-484(in Chinese) 方俊明.信息加工认知心理学的发展和面临的挑战[J].心理科学,1998,21(6):481-484
[10] Lathia N,Hailes S,Capra L,et al.Temporal diversity in recommender systems[C]∥Proceedings of the 33rd International ACM SIGIR Conference on Research and Development in Information Retrieval.ACM,2010:210-217
[11] http://kddcup.yahoo.com/datasets.php#
[12] Zhao Liang,Hu Nai-jing,Zhang Shou-zhi.Algorithm Design for Personalization Recommendation System[J].Jounal of Compu-ter Research and Development,2002,39(8):986-991(in Chinese) 赵亮,胡乃静,张守志.个性化推荐算法设计[J].计算机研究与发展,2002,39(8):986-991

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!