计算机科学 ›› 2018, Vol. 45 ›› Issue (11A): 198-202.
于美玉, 吴昊, 郭晓燕, 贾棋, 郭禾
YU Mei-yu, WU Hao, GUO Xiao-yan, JIA Qi GUO He
摘要: 草图识别是一项很具有挑战性的工作。目前,大部分草图识别的工作都将草图当作普通的纹理图像,忽视了草图的时序性。因此,文中通过挖掘草图的时序性,将草图笔画按照时间分组。为进一步利用时序特征在草图识别过程中的作用,使用了循环神经网络将笔画分组按照时间序列作为输入,最后使用联合贝叶斯将各个时序下获得的草图特征进行整合,完成草图的识别工作。在公开标准数据集上对所提算法进行了测试,实验结果显示该算法的识别准确率明显高于其他算法。
中图分类号:
[1]EITZ M,HAYS J,ALEXA M.How do humans sketch object?[J].ACM Transactions on Graphics,2012,31(4):1-10. [2]SCHNEIDER R G,TUYTELAARS T.Sketch classification and classification-driven analysis using fisher vectors[J].ACM Transactions on Graphics,2014,33(6):174. [3]EITZ M,HILDEBRAND K,BOUBEKEUR T,et al.Sketch-based image retrieval:Benchmark and bag-of-featuresdescriptors[J].IEEE Transactions on Visualization and Computer Grap-hics,2011,17(11):1624-1636. [4]HU R,COLLOMOSSE J.A performance evaluation of gradient field hog descriptor for sketch based image retrieval[J].Computer Vision and Image Understanding,2013,117(7):790-806. [5]WANG F,KANG L,LI Y.Sketch-based 3d shape retrieval using convolutional neural network[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Boston,MA,USA:IEEE Press,2015:1875-1883. [6]DALAL N,TRIGGS B.Histograms of oriented gradients for human detection[C]∥2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.San Diego,CA,USA:IEEE Press,2005,1:886-893. [7]LOWE D G.Distinctive image features from scale-invariant keypoints[J].International Journal of Computer Vision,2004,60(2):91-110. [8]YU Q,YANG Y,SONG Y Z,et al.Sketch-a-net that beats humans[C]∥British Machine Vision Conference,BMVC 2015.Swansea,UK:BMVA Press,2015:1-12. [9]LI Y,HOSPEDALES T M,SONG Y Z,et al.Free-hand sketch recognition by multi-kernel feature learning[J].Computer Vision and Image Understanding,2015,137:1-11. [10]KRIZHEVSKY A,SUTSKEVER I,HINTON G E.Image net classification with deep convolutional neural networks[C]∥Advances in Neural Information Processing Systems.Lake Tahoe,Nevada,USA:IEEE Press,2012:1097-1105. [11]王卫,尹建峰,孙正兴.一种手绘草图的快速参数化方法[J].计算机科学,2006,33(1):264-268. [12]袁贞明,金贵朝,张佳.基于贝叶斯网络的在线草图识别算法[J].计算机工程,2010,36(5):32-34. [13]尹建锋,孙正兴.基于时序的多笔划草图识别[J/OL].中国科技论文在线,http://www.paper.edu.cn/search/simple?searchType=&searchContent=%25E5%259F%25BA%25E4%25BA%258E%25E6%2597%25B6%25E5%25BA%258F%25E7%259A%2584%25E5%25A4%259A%25E7%25AC%2594%25 E5%2588%2592%25E8%258D%2589%25E5%259B%25BE%25E8%25AF%2586%25E5%2588%25AB&searchDate=2003-2018&searchPage=1&searchSub-ject=%25E5%2585%25A8%25E9%2583%25A8&searchSort=relevant. [14]SIMONYAN K,ZISSERMAN A.Very deep convolutional net works for large-scale image recognition[J].arXivpreprint arXiv:1409.1556,2014. [15]LECUN Y,BOSER B E,DENKER J S,et al.Handwritten digit recognition with a back-propagation network[C]∥Advances in Neural Information Processing Systems.Denver,Colorado,USA:Morgan Kaufmann,1990:396-404. [16]WANG F,KANG L,LI Y.Sketch-based 3d shape retrieval using convolutional neural networks[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Boston,MA,USA:IEEE Computer Society,2015:1875-1883. [17]VINYALS O,RAVURI S V,POVEY D.Revisiting recurrent neural networks for robust ASR[C]∥2012 IEEE International Conference on Acoustics,Speech and Signal Processing.Kyoto,Japan:IEEE Press,2012:4085-4088. [18]SUTSKEVER I,MARTENS J,HINTON G E.Generating text with recurrent neural networks[C]∥Proceedings of the 28th International Conference on Machine Learning.Bellevue,Wa-shington,USA:MLR.org,2011:1017-1024. [19]HOCHREITER S,SCHMIDHUBER J.Long short-term memory[J].Neural Computation,1997,9(8):1735-1780. [20]CHO K,VAN MERRIËNBOER B,GULCEHRE C,et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[C]∥Proceedings of the 2014 Conference on Empirical Methods in Natural Language Proces-sing,EMNLP 2014.Doha,Qatar:Association for Computational Linguistics,2014:1724-1734. [21]CHUNG J,GULCEHRE C,CHO K,et al.Gated feedback recurrent neural networks[C]∥International Conference on Machine Learning.Lille,France:MLR.org,2015:2067-2075. [22]CHEN D,CAO X,WANG L,et al.Bayesian face revisited:A joint formulation[C]∥12th European Conference on Computer Vision.Florence,Italy:Springer,2012:566-579. [23]COLLOBERT R,BENGIO S,MARIÉTHOZ J.Torch:a modular machine learning software library[R].Idiap Research Report,2002. [24]LI Y,SONG Y Z,GONG S.Sketch Recognition by Ensemble Matching of Structured Features[C]∥British Machine Vision Conference,BMVC 2013.Bristol,UK:BMVA Press,2013:2. [25]YU Q,YANG Y,LIU F,et al.Sketch-a-net:A deep neural network that beats humans[J].International Journal of Computer Vision,2017,122(3):411-425. |
[1] | 彭双, 伍江江, 陈浩, 杜春, 李军. 基于注意力神经网络的对地观测卫星星上自主任务规划方法 Satellite Onboard Observation Task Planning Based on Attention Neural Network 计算机科学, 2022, 49(7): 242-247. https://doi.org/10.11896/jsjkx.210500093 |
[2] | 喻昕, 林植良. 解决一类非光滑伪凸优化问题的新型神经网络 Novel Neural Network for Dealing with a Kind of Non-smooth Pseudoconvex Optimization Problems 计算机科学, 2022, 49(5): 227-234. https://doi.org/10.11896/jsjkx.210400179 |
[3] | 安鑫, 代子彪, 李阳, 孙晓, 任福继. 基于BERT的端到端语音合成方法 End-to-End Speech Synthesis Based on BERT 计算机科学, 2022, 49(4): 221-226. https://doi.org/10.11896/jsjkx.210300071 |
[4] | 时雨涛, 孙晓. 一种会话理解模型的问题生成方法 Conversational Comprehension Model for Question Generation 计算机科学, 2022, 49(3): 232-238. https://doi.org/10.11896/jsjkx.210200153 |
[5] | 李昊, 曹书瑜, 陈亚青, 张敏. 基于注意力机制的用户轨迹识别模型 User Trajectory Identification Model via Attention Mechanism 计算机科学, 2022, 49(3): 308-312. https://doi.org/10.11896/jsjkx.210300231 |
[6] | 肖丁, 张玙璠, 纪厚业. 基于多头注意力机制的用户窃电行为检测 Electricity Theft Detection Based on Multi-head Attention Mechanism 计算机科学, 2022, 49(1): 140-145. https://doi.org/10.11896/jsjkx.210100177 |
[7] | 曾友渝, 谢强. 基于改进RNN和VAR的船舶设备故障预测方法 Fault Prediction Method Based on Improved RNN and VAR for Ship Equipment 计算机科学, 2021, 48(6): 184-189. https://doi.org/10.11896/jsjkx.200700117 |
[8] | 尹久, 池凯凯, 宦若虹. 基于ATT-DGRU的文本方面级别情感分析 Aspect-level Sentiment Analysis of Text Based on ATT-DGRU 计算机科学, 2021, 48(5): 217-224. https://doi.org/10.11896/jsjkx.200500076 |
[9] | 王习, 张凯, 李军辉, 孔芳, 张熠天. 联合自注意力和循环网络的图像标题生成 Generation of Image Caption of Joint Self-attention and Recurrent Neural Network 计算机科学, 2021, 48(4): 157-163. https://doi.org/10.11896/jsjkx.200300146 |
[10] | 陈千, 车苗苗, 郭鑫, 王素格. 一种循环卷积注意力模型的文本情感分类方法 Recurrent Convolution Attention Model for Sentiment Classification 计算机科学, 2021, 48(2): 245-249. https://doi.org/10.11896/jsjkx.200100078 |
[11] | 吕明琪, 洪照雄, 陈铁明. 一种融合时空关联与社会事件的交通流预测方法 Traffic Flow Forecasting Method Combining Spatio-Temporal Correlations and Social Events 计算机科学, 2021, 48(2): 264-270. https://doi.org/10.11896/jsjkx.200300098 |
[12] | 李亚男, 胡宇佳, 甘伟, 朱敏. 基于深度学习的miRNA靶位点预测研究综述 Survey on Target Site Prediction of Human miRNA Based on Deep Learning 计算机科学, 2021, 48(1): 209-216. https://doi.org/10.11896/jsjkx.191200111 |
[13] | 庄世杰, 於志勇, 郭文忠, 黄昉菀. 基于Zoneout的跨尺度循环神经网络及其在短期电力负荷预测中的应用 Short Term Load Forecasting via Zoneout-based Multi-time Scale Recurrent Neural Network 计算机科学, 2020, 47(9): 105-109. https://doi.org/10.11896/jsjkx.190800030 |
[14] | 游兰, 韩雪薇, 何正伟, 肖丝雨, 何渡, 潘筱萌. 基于改进Seq2Seq的短时AIS轨迹序列预测模型 Improved Sequence-to-Sequence Model for Short-term Vessel Trajectory Prediction Using AIS Data Streams 计算机科学, 2020, 47(9): 169-174. https://doi.org/10.11896/jsjkx.190800060 |
[15] | 赫磊, 邵展鹏, 张剑华, 周小龙. 基于深度学习的行为识别算法综述 Review of Deep Learning-based Action Recognition Algorithms 计算机科学, 2020, 47(6A): 139-147. https://doi.org/10.11896/JsJkx.190900176 |
|