融合小波变换和新形态学的含噪图像边缘检测

计算机科学 ›› 2018, Vol. 45 ›› Issue (11A): 194-197.

• 模式识别与图像处理 • 上一篇    下一篇

融合小波变换和新形态学的含噪图像边缘检测

余小庆, 陈仁文, 唐杰, 许锦婷   

  1. 南京航空航天大学机械结构力学及控制国家重点实验室 南京210016
  • 出版日期:2019-02-26 发布日期:2019-02-26
  • 作者简介:余小庆(1992-),男,硕士,主要研究方向为图像处理、模式识别、机器视觉;陈仁文(1966-),男,博士,教授,主要研究方向为图像处理、压电振动能量采集、智能结构、模式识别、机器学习,E-mail:rwchen@nuaa.edu.cn。
  • 基金资助:
    本文受国家自然科学基金项目(51675265),江苏高校优势学科建设工程基金资助。

Edge Detection for Noisy Image Based on Wavelet Transform and New Mathematical Morphology

YU Xiao-qing, CHEN Ren-wen, TANG Jie, XU Jin-ting   

  1. State Key Laboratory of Mechanics and Control of Mechanical Structures,Nanjing University of Aeronautics and
    Astronautics,Nanjing 210016,China
  • Online:2019-02-26 Published:2019-02-26

摘要: 针对图像边缘检测中,滤除图像噪声并有效保留图像边缘信息这一研究,提出了一种融合小波变换模极大值法和新型改进的数学形态学的含噪图像边缘检测方法。首先介绍了基于小波变换模极大值的图像边缘检测算法;然后提出了一种新型改进的数学形态学检测算法;最后为了综合两种算法的优点,应用新的融合方式将两种方法的检测结果融合到一起,提出一种融合小波变换和新形态学的含噪图像边缘检测方法。实验结果表明,提出的融合检测算法相比于单独使用小波变换模极大值或数学形态学算法,能更有效地抑制噪声,提高边缘检测效果。

关键词: 边缘检测, 模极大值, 数学形态学, 图像融合

Abstract: In order to remove image noise and preserve image edge information in image edge detection,a edge detection method for noisy image based on wavelet transform modulus maxima and improved mathematical morphology edge detection was proposed.Firstly,the image edge detection algorithm based on wavelet transform modulus maxima was introduced.Then a new improved mathematical morphology was proposed.Finally,in order to synthesize the merits of the two algorithms,a new fusion method was used to fuse the results of the two methods together,and a novel edge detection method for noisy image based on wavelet transform and new morphology was proposed.The experimental results show that the proposed fusion detection algorithm can suppress the noise more effectively and improve the edge detection effect than using wavelet transform modulus maxima or new mathematical morphology alone.

Key words: Edge detection, Image fusion, Mathematical morphology, Modulus maximum

中图分类号: 

  • TP391.41
[1]王慧锋,战桂礼,罗晓明.基于数学形态学的边缘检测算法研究及应用[J].计算机工程与应用,2009,31(2):223-226.
[2]YANG J,LI X B.Boundary Detection using Mathematical Morphology[J].Pattern Recognition Letters,1995,16(12):1277-1286.
[3]于博,牛铮,王力,等.抗噪形态学边缘检测新算子[J].信息技术,2012(3):10-12.
[4]王淑青,姚伟,陈进,等.基于直方图均衡化与形态学处理的边缘检测[J].计算机应用与软件,2016,33(3):193-196.
[5]ZHANG L,BAO P.Edge Detection by Scale Multiplication in Wavelet Domain[J].Pattern Recognition Letters,2002,23(14):1771-1784.
[6]WANG F Y,CHEN M,FEI Q S.The Improved Method for Ima-ge Edge Detection Based on Wavelet Transform with Modulus Maxima[J].Advanced Materials Research,2014,850-851(4):897-900.
[7]夏平,刘馨琼,向学军,等.基于形态学多结构基元的含噪图像边缘检测[J].计算机仿真,2010,27(7):206-209.
[8]RANI S.A novel mathematical morphology based edge detection method for medical images[J].Csi Transactions on Ict,2016,4(2-4):1-9.
[9]黄海龙,王宏.一种基于小波变换和数学形态学的边缘检测算法[J].东北大学学报(自然科学版),2011,32(9):1315-1318.
[10]ZHANG W,SHI D,YANG X.An improved edge detection algorithm based on mathematical morphology and directional wavelet transform[C]∥International Congress on Image and Signal Processing.IEEE,2016:335-339.
[11]XIONG Y,LI J,ZUO X,et al.Research on an Edge Detection Algorithm of Remote Sensing Image Based on Wavelet Enhancement and Morphology[J].Journal of Computers,2014,9(5):1247-1252.
[12]LIU B,SUN B,GUAN M,et al.Image edge detection method based on nonseparable additive wavelet and morphological gra-dient[J].Chinese Journal of Quantum Electronics,2015,32(6):654-662.
[13]LIN S.Edge Detection Based on Wavelet Transform and Morphology[J].Chinese Journal of Scientific Instrument,2004,25(4):685-687.
[14]LUAN G,CHE R.A Simple and Efficient Edge Detection Algorithm.[C]∥International Symposium on Computer Science and Computational Technology.IEEE,2008:40-44.
[15]熊立志,陈立潮,潘理虎,等.基于多尺度轮廓结构元素的多形状边缘检测[J].计算机应用研究,2012,29(9):3497-3500.
[16]沈阳.基于形态学的图像边缘检测技术研究[D].成都:电子科技大学,2008.
[17]邓彩霞,王贵彬,杨鑫蕊.改进的抗噪形态学边缘检测算法[J].数据采集与处理,2013,28(6):739-745.
[1] 程成, 降爱莲.
基于多路径特征提取的实时语义分割方法
Real-time Semantic Segmentation Method Based on Multi-path Feature Extraction
计算机科学, 2022, 49(7): 120-126. https://doi.org/10.11896/jsjkx.210500157
[2] 赵明华, 周童童, 都双丽, 石争浩.
基于虚拟曝光方法的单幅逆光图像增强
Single Backlit Image Enhancement Based on Virtual Exposure Method
计算机科学, 2022, 49(6A): 384-389. https://doi.org/10.11896/jsjkx.210400243
[3] 来腾飞, 周海洋, 余飞鸿.
视频流的实时景深延拓算法
Real-time Extend Depth of Field Algorithm for Video Processing
计算机科学, 2022, 49(6A): 314-318. https://doi.org/10.11896/jsjkx.201100187
[4] 高元浩, 罗晓清, 张战成.
基于特征分离的红外与可见光图像融合算法
Infrared and Visible Image Fusion Based on Feature Separation
计算机科学, 2022, 49(5): 58-63. https://doi.org/10.11896/jsjkx.210200148
[5] 颜敏, 罗晓清, 张战成.
基于光传输模型学习的红外和可见光图像融合网络设计
Infrared and Visible Image Fusion Network Based on Optical Transmission Model Learning
计算机科学, 2022, 49(4): 215-220. https://doi.org/10.11896/jsjkx.210200174
[6] 官铮, 邓扬琳, 聂仁灿.
光谱重建约束非负矩阵分解的高光谱与全色图像融合
Non-negative Matrix Factorization Based on Spectral Reconstruction Constraint for Hyperspectral and Panchromatic Image Fusion
计算机科学, 2021, 48(9): 153-159. https://doi.org/10.11896/jsjkx.200900054
[7] 黄晓生, 徐静.
基于PCANet的非下采样剪切波域多聚焦图像融合
Multi-focus Image Fusion Method Based on PCANet in NSST Domain
计算机科学, 2021, 48(9): 181-186. https://doi.org/10.11896/jsjkx.200800064
[8] 田嵩旺, 蔺素珍, 杨博.
基于多判别器的多波段图像自监督融合方法
Multi-band Image Self-supervised Fusion Method Based on Multi-discriminator
计算机科学, 2021, 48(8): 185-190. https://doi.org/10.11896/jsjkx.200600132
[9] 宋昱, 孙文赟.
改进非线性结构张量的含噪图像边缘检测
Edge Detection in Images Corrupted with Noise Based on Improved Nonlinear Structure Tensor
计算机科学, 2021, 48(6): 138-144. https://doi.org/10.11896/jsjkx.200600017
[10] 王丽芳, 王蕊芳, 蔺素珍, 秦品乐, 高媛, 张晋.
基于双残差超密集网络的多模态医学图像融合
Multimodal Medical Image Fusion Based on Dual Residual Hyper Densely Networks
计算机科学, 2021, 48(2): 160-166. https://doi.org/10.11896/jsjkx.200400095
[11] 朱戎, 叶宽, 杨博, 谢欢, 赵蕾.
基于改进DeeplabV3+的地物分类方法研究
Feature Classification Method Based on Improved DeeplabV3+
计算机科学, 2021, 48(11A): 382-385. https://doi.org/10.11896/jsjkx.201100184
[12] 朱珍, 黄锐, 臧铁钢, 卢世军.
基于加权近红外图像融合的单幅图像除雾方法
Single Image Defogging Method Based on Weighted Near-InFrared Image Fusion
计算机科学, 2020, 47(8): 241-244. https://doi.org/10.11896/jsjkx.200300068
[13] 刘俊琦, 李智, 张学阳.
基于视觉显著性的海面船只候选区域检测方法
Candidate Region Detection Method for Maritime Ship Based on Visual Saliency
计算机科学, 2020, 47(6A): 237-241. https://doi.org/10.11896/JsJkx.191000196
[14] 朱莹,夏亦犁,裴文江.
基于改进的BEMD的红外与可见光图像融合方法
Fusion of Infrared and Color Visible Images Based on Improved BEMD
计算机科学, 2020, 47(3): 124-129. https://doi.org/10.11896/jsjkx.190100038
[15] 陈立福,刘燕芝,张鹏,袁志辉,邢学敏.
基于Multi-Path RefineNet的多特征高分辨率SAR图像道路提取算法
Road Extraction Algorithm of Multi-feature High-resolution SAR Image Based on Multi-Path RefineNet
计算机科学, 2020, 47(3): 156-161. https://doi.org/10.11896/jsjkx.190100124
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!