Abstract
The determination of the extent of the non-viable tissue after myocardial infarction has a major impact on further treatment of patients. During acute myocardial infarction, total sodium content of the tissue is elevated. This is caused by discontinuation of ion homeostasis, edema formation and membrane rupture. The situation is a different one in the chronic phase of scar formation, where cell migration causes changes in the ratio of extra- and intracellular volume. The accumulation of sodium causes an increase in the signal in 23Na magnetic resonance imaging. The differences in intra- and extracellular sodium concentration modulate total sodium content and can be used as a natural, intrinsic contrast. In animal experiments, 23Na magnetic resonance imaging allows the non-invasive determination of infarct size. As neither stunned nor hibernating tissue shows elevated total sodium content of the tissue, the method is able to discriminate viable and non-viable tissue. A small number of initial clinical studies show promising results for the use of this technique in humans. The development of 23Na magnetic resonance imaging and the current status of the application are described.
Keywords: Magnetic Resonance Imaging, myocardial viability, myocardial infarction, ion homeostasis
Current Vascular Pharmacology
Title: 23Na Magnetic Resonance Imaging for the Determination of Myocardial Viability: The Status and the Challenges
Volume: 2 Issue: 4
Author(s): Michael Horn
Affiliation:
Keywords: Magnetic Resonance Imaging, myocardial viability, myocardial infarction, ion homeostasis
Abstract: The determination of the extent of the non-viable tissue after myocardial infarction has a major impact on further treatment of patients. During acute myocardial infarction, total sodium content of the tissue is elevated. This is caused by discontinuation of ion homeostasis, edema formation and membrane rupture. The situation is a different one in the chronic phase of scar formation, where cell migration causes changes in the ratio of extra- and intracellular volume. The accumulation of sodium causes an increase in the signal in 23Na magnetic resonance imaging. The differences in intra- and extracellular sodium concentration modulate total sodium content and can be used as a natural, intrinsic contrast. In animal experiments, 23Na magnetic resonance imaging allows the non-invasive determination of infarct size. As neither stunned nor hibernating tissue shows elevated total sodium content of the tissue, the method is able to discriminate viable and non-viable tissue. A small number of initial clinical studies show promising results for the use of this technique in humans. The development of 23Na magnetic resonance imaging and the current status of the application are described.
Export Options
About this article
Cite this article as:
Horn Michael, 23Na Magnetic Resonance Imaging for the Determination of Myocardial Viability: The Status and the Challenges, Current Vascular Pharmacology 2004; 2 (4) . https://dx.doi.org/10.2174/1570161043385574
DOI https://dx.doi.org/10.2174/1570161043385574 |
Print ISSN 1570-1611 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-6212 |
Call for Papers in Thematic Issues
TREATMENT OF CARDIOVASCULAR DISEASE IN CHRONIC AND END STAGE KIDNEY DISEASE
Cardiovascular disease still remains the leading cause of death in Chronic and End Stage Kidney Disease, accounting for more than half of all deaths in dialysis patients. During the past decade, research has been focused on novel therapeutic agents that might delay or even reverse cardiovascular disease and vascular calcification, ...read more
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Pleiotropic Actions of PPARg Activators Thiazolidinediones in Cardiovascular Diseases
Current Pharmaceutical Design Regulation of Angiogenesis by Macrophages, Dendritic Cells, and Circulating Myelomonocytic Cells
Current Pharmaceutical Design Brutons Tyrosine Kinase as a New Therapeutic Target
Anti-Cancer Agents in Medicinal Chemistry Myocardial Infarction. Pathological Relevance and Relationship with Coronary Risk Factors
Current Pharmaceutical Design Integrating Coronary Calcium into Risk Prediction: Current Approaches and Future Directions
Current Cardiology Reviews Cardiac Cell Therapy and Bypass Surgery
Current Pharmaceutical Design Safety and Efficacy of Tirofiban as an Adjunctive Therapy for Patients with St-Elevation Myocardial Infarction: A Comparison Versus Placebo and Abciximab
Cardiovascular & Hematological Agents in Medicinal Chemistry Progress Towards the Development of Anti-Inflammatory Inhibitors of IKKβ
Current Topics in Medicinal Chemistry Mesenchymal Stem Cells: Promising for Myocardial Regeneration?
Current Stem Cell Research & Therapy Microvasculature Recovery by Angiogenesis After Myocardial Infarction
Current Pharmaceutical Design Mn-SOD and Chronic Inflammation of Gastric Mucosa
Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry Ultrastructural Blood Cell Changes in Patients with COVID-19
Coronaviruses Disruption of Circadian Rhythms and Delirium, Sleep Impairment and Sepsis in Critically ill Patients. Potential Therapeutic Implications for Increased Light-Dark Contrast and Melatonin Therapy in an ICU Environment
Current Pharmaceutical Design Lipoproteins, Stroke and Statins
Current Vascular Pharmacology Patent Selections
Recent Patents on Cardiovascular Drug Discovery Adult Stem Cells and the Clinical Arena: Are we Able to Widely Use this Therapy in Patients with Chronic Limbs Arteriopathy and Ischemic Ulcers without Possibility of Revascularization?
Cardiovascular & Hematological Agents in Medicinal Chemistry Editorial [Hot Topic:Modifying Cardiovascular Risk Factors: Newer Insights and Preventive Measures (Executive Editor: Aurelio Leone)]
Current Pharmaceutical Design Sleep-Disordered Breathing and Cardiovascular Disease: Exploring Pathophysiology and Existing Data
Current Respiratory Medicine Reviews Antiplatelet Therapies: Platelet GPIIb / IIIa Antagonists and Beyond
Current Pharmaceutical Design Cardiotoxicity of Biological Therapies in Cancer Patients: An In-depth Review
Current Cardiology Reviews