Abstract
The idea that within the bulk of leukemic cells there are immature progenitors which are intrinsically resistant to chemotherapy and able to repopulate the tumor after treatment is not recent. Nevertheless, the term leukemia stem cells (LSCs) has been adopted recently to describe these immature progenitors based on the fact that they share the most relevant features of the normal hematopoetic stem cells (HSCs), i.e. the self-renewal potential and quiescent status. LSCs differ from their normal counterparts and from the more differentiated leukemic cells regarding the default status of pathways regulating apoptosis, cell cycle, telomere maintenance and transport pumps activity. In addition, unique features regarding the interaction of these cells with the microenvironment have been characterized. Therapeutic strategies targeting these unique features are at different stages of development but the reported results are promising. The aim of this review is, by taking acute myeloid leukemia (AML) as a bona fide example, to discuss some of the mechanisms used by the LSCs to survive and the strategies which could be used to eradicate these cells.
Keywords: Leukemia stem cells, acute myeloid leukemia, bone marrow microenvironment
Anti-Cancer Agents in Medicinal Chemistry
Title: Targeting the Acute Myeloid Leukemia Stem Cells
Volume: 10 Issue: 2
Author(s): Alexandre Krause, Luciana M. Fontanari Krause and Eduardo M. Rego
Affiliation:
Keywords: Leukemia stem cells, acute myeloid leukemia, bone marrow microenvironment
Abstract: The idea that within the bulk of leukemic cells there are immature progenitors which are intrinsically resistant to chemotherapy and able to repopulate the tumor after treatment is not recent. Nevertheless, the term leukemia stem cells (LSCs) has been adopted recently to describe these immature progenitors based on the fact that they share the most relevant features of the normal hematopoetic stem cells (HSCs), i.e. the self-renewal potential and quiescent status. LSCs differ from their normal counterparts and from the more differentiated leukemic cells regarding the default status of pathways regulating apoptosis, cell cycle, telomere maintenance and transport pumps activity. In addition, unique features regarding the interaction of these cells with the microenvironment have been characterized. Therapeutic strategies targeting these unique features are at different stages of development but the reported results are promising. The aim of this review is, by taking acute myeloid leukemia (AML) as a bona fide example, to discuss some of the mechanisms used by the LSCs to survive and the strategies which could be used to eradicate these cells.
Export Options
About this article
Cite this article as:
Krause Alexandre, Fontanari Krause M. Luciana and Rego M. Eduardo, Targeting the Acute Myeloid Leukemia Stem Cells, Anti-Cancer Agents in Medicinal Chemistry 2010; 10 (2) . https://dx.doi.org/10.2174/187152010790909281
DOI https://dx.doi.org/10.2174/187152010790909281 |
Print ISSN 1871-5206 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5992 |
Call for Papers in Thematic Issues
Advances in Nanomedicines and Targeted Therapies for Colorectal Cancer
Colorectal cancer remains a significant global health challenge, with high incidence and mortality rates despite advancements in treatment strategies. Conventional therapies often face limitations such as systemic toxicity, drug resistance, and suboptimal targeting. The advent of nanomedicines and innovative drug delivery systems offers new hope for overcoming these challenges and ...read more
Discovery of Lead compounds targeting transcriptional regulation
Transcriptional regulation plays key physiological functions in body growth and development. Transcriptional dysregulation is one of the important biomarkers of tumor genesis and progression, which is involved in regulating tumor cell processes such as cell proliferation, differentiation, and apoptosis. Additionally, it plays a pivotal role in angiogenesis and promotes tumor ...read more
Innovative targets in medicinal chemistry
Medicinal chemistry continuously evolves in response to emerging healthcare needs and advancements in scientific understanding. This special issue explores the current landscape of innovative targets in medicinal chemistry, highlighting the quest for novel therapeutic avenues. From traditional drug targets such as enzymes and receptors to emerging targets like protein-protein interactions ...read more
Rechallenge Therapy in different types of cancer
Cancer is responsible for approximately 8 million deaths annually worldwide. GLOBOCAN 2020 reported 19.3 million new cases of cancer, which is projected to increase to 28.4 million by 2040. In the future, female breast cancer will be the most common cancer (11.7%), followed by lung (11.4%), colorectal (10.0%), prostate (7.3%), ...read more
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
Related Articles
-
Targeting the JAK/STAT Signaling Pathway for Breast Cancer
Current Medicinal Chemistry Medical Treatment of Gastrointestinal Stromal Tumors: State of the Art and Future Perspectives
Reviews on Recent Clinical Trials Imatinib Mesylate (Gleevec©): Targeted Therapy Against Cancer with Immune Properties
Endocrine, Metabolic & Immune Disorders - Drug Targets The Role of Peptidyl Prolyl Isomerases in Aging and Vascular Diseases
Current Molecular Pharmacology Eph/Ephrin Membrane Proteins: A Mammalian Expression Vector pTIg- BOS-Fc Allowing Rapid Protein Purification
Protein & Peptide Letters Invasive Aspergillosis: New Insights into Disease, Diagnostic and Treatment
Current Pharmaceutical Design Survivin: Role in Normal Cells and in Pathological Conditions
Current Cancer Drug Targets Ring Opening of Tetrazole via Unusual Vilsmeir-Haack Reaction Forming Novel Triazenes
Letters in Organic Chemistry Malignancy in Common Variable Immune Deficiency: Report of Two Rare Cases of Gastrointestinal Malignancy and a Review of the Literature
Cardiovascular & Hematological Disorders-Drug Targets Diazenyl Derivatives and their Complexes as Anticancer Agents
Anti-Cancer Agents in Medicinal Chemistry Gene Modified Cell Transplantation for Vascular Regeneration
Current Gene Therapy Nanotechnology for Cancer Diagnostics and Therapy – An Update on Novel Molecular Players
Current Cancer Therapy Reviews Optimization of Lentiviral Vectors Generation for Biomedical and Clinical Research Purposes: Contemporary Trends in Technology Development and Applications
Current Gene Therapy A Discussion of MicroRNAs in Cancers
Current Bioinformatics NMN/NaMN Adenylyltransferase (NMNAT) and NAD Kinase (NADK) Inhibitors: Chemistry and Potential Therapeutic Applications
Current Medicinal Chemistry Future Prospect of RNA Interference for Cancer Therapies
Current Drug Targets Therapeutic Strategy of Advanced Hepatocellular Carcinoma by Using Combined Intra-Arterial Chemotherapy
Recent Patents on Anti-Cancer Drug Discovery Exploring Mechanisms of MicroRNA Downregulation in Cancer
MicroRNA New Developments in Targeted Analysis of Protein Posttranslational Modifications
Current Proteomics Perspectives in Nanomedicine-Based Research Towards Cancer Therapies
Current Nanoscience