Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disorder of unknown aetiology. Progressive motor weakness and bulbar dysfunction lead to premature death, usually from respiratory failure. To date, riluzole is the only disease-modifying drug approved for the treatment of ALS, but this has only a minor impact on the clinical outcome. The clinical development of new drugs for ALS is entirely dependent on the understanding of the aetiology and pathophysiology of the disease, which is still far from being fully elucidated. ALS is a multisystem disorder and can be viewed as the consequence of a complex neurodegenerative process involving neuron-glia interactions. Excitotoxicity, oxidative stress, mitochondrial dysfunction, cytoskeletal defects and apoptosis are all putative mechanisms which seem to operate in ALS and might be amenable of pharmacological intervention. Since the pathogenesis of ALS seems to involve multiple factors, future treatments may target different molecular pathways by a combined multi-drug therapy.
Keywords: als, neuroprotection, clinical trials, excitotoxicity, oxidative stress, apoptosis
Current Neuropharmacology
Title: Possible Neuroprotective Strategies in ALS
Volume: 2 Issue: 3
Author(s): Simone Beretta, Laura Brighina and Carlo Ferrarese
Affiliation:
Keywords: als, neuroprotection, clinical trials, excitotoxicity, oxidative stress, apoptosis
Abstract: Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disorder of unknown aetiology. Progressive motor weakness and bulbar dysfunction lead to premature death, usually from respiratory failure. To date, riluzole is the only disease-modifying drug approved for the treatment of ALS, but this has only a minor impact on the clinical outcome. The clinical development of new drugs for ALS is entirely dependent on the understanding of the aetiology and pathophysiology of the disease, which is still far from being fully elucidated. ALS is a multisystem disorder and can be viewed as the consequence of a complex neurodegenerative process involving neuron-glia interactions. Excitotoxicity, oxidative stress, mitochondrial dysfunction, cytoskeletal defects and apoptosis are all putative mechanisms which seem to operate in ALS and might be amenable of pharmacological intervention. Since the pathogenesis of ALS seems to involve multiple factors, future treatments may target different molecular pathways by a combined multi-drug therapy.
Export Options
About this article
Cite this article as:
Beretta Simone, Brighina Laura and Ferrarese Carlo, Possible Neuroprotective Strategies in ALS, Current Neuropharmacology 2004; 2 (3) . https://dx.doi.org/10.2174/1570159043359684
DOI https://dx.doi.org/10.2174/1570159043359684 |
Print ISSN 1570-159X |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-6190 |
Call for Papers in Thematic Issues
Advances in paediatric and adult brain cancers: emerging targets and treatments
Brain tumors are the most common solid tumors affecting children and adolescents, with up to 5,000 children diagnosed per year. Pediatric brain tumors, because of their location, are often untreatable and their clinical management can cause significant long-term impairment to intellectual and neurological function with epilepsy and neurodegeneration. Other than ...read more
Emotion (dys)regulation: an integration of pharmacological, neurobiological and psychologicalframeworks
Emotion regulation is a critical aspect of mental well-being and interpersonal relationships. To fully understand and effectively address emotion regulation, an integrative approach that considers pharmacological, neurobiological, and psychological frameworks is essential. Pharmacological interventions, such as medications targeting neurotransmitter imbalances, can play a significant role in managing emotional dysregulation. Understanding ...read more
Intercellular Communications in cerebral ischemia
Cerebral ischemia, a condition in which there is inadequate blood supply to the brain, ranks as one of the leading causes of disability and mortality globally. Despite its prevalence and severity, efficacious treatment options for this debilitating disorder remain limited. Recent scientific explorations have delved deeply into the pathological mechanisms ...read more
Microbiota- Gut - Brain Axis in mood and neuropsychiatric disorders. Therapeutic opportunities
The researches of the last two decades indicate that the role of the intestinal system can be fundamental in most diseases. The bidirectional Microbiota - Gut –Brain - Axis (MGBA) includes the central nervous system (CNS), the autonomic nervous system (ANS), the vagus nerve, the neuroendocrine system, neuroimmune systems, the ...read more
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
- Forthcoming Thematic Issues
Related Articles
-
Aging as an Evolvability-Increasing Program Which can be Switched Off by Organism to Mobilize Additional Resources for Survival
Current Aging Science Controlling the Flow of Energy: Inhibition and Stimulation of the Creatine Transporter
Current Enzyme Inhibition Metallothionein I+II Expression as an Early Sign of Chronic Relapsing Experimental Autoimmune Encephalomyelitis in Rats
Current Aging Science Commentary [ Research Highlights(To miR or Not to miR: That is the Question in ALS Disease ]
CNS & Neurological Disorders - Drug Targets Hypoxia Inducible Factor-1 as a Target for Neurodegenerative Diseases
Current Medicinal Chemistry Involvement of Cytosolic Phospholipase A2, Calcium Independent Phospholipase A2 and Plasmalogen Selective Phospholipase A2 in Neurodegenerative and Neuropsychiatric Conditions
Current Medicinal Chemistry Small Diverse Antioxidant Functionalities for Oxidative Stress Disease Drug Discovery
Mini-Reviews in Medicinal Chemistry Linkage of Stress with Neuromuscular Disorders
CNS & Neurological Disorders - Drug Targets Commentary((Research Highlights)(Amyotrophic Lateral Sclerosis: Targeting the Body’s Energy Engine))
CNS & Neurological Disorders - Drug Targets Calcium Homeostasis Following Traumatic Neuronal Injury
Current Neurovascular Research FKBP Ligands as Novel Therapeutics for Neurological Disorders
Mini-Reviews in Medicinal Chemistry DNA Repair in Premature Aging Disorders and Neurodegeneration
Current Aging Science Targeting Exocytosis: Ins and Outs of the Modulation of Quantal Dopamine Release
CNS & Neurological Disorders - Drug Targets A Review of Current and Prospective Treatments for Channelopathies, with a Focus on Gene and Protein Therapy
Current Pharmaceutical Design Patent Selections
Recent Patents on CNS Drug Discovery (Discontinued) Cell-Penetrating Peptide Technology to Deliver Chaperones and Associated Factors in Diseases and Basic Research
Current Pharmaceutical Biotechnology Patent Review
Combinatorial Chemistry & High Throughput Screening Anti-IL-1 β Therapies
Recent Patents on DNA & Gene Sequences Physically Cross-linked Hydrogels of β -cyclodextrin Polymer and Poly(ethylene glycol)-cholesterol as Delivery Systems for Macromolecules and Small Drug Molecules
Current Drug Delivery Subject Index To Volume 3
Current Alzheimer Research