Short Fragmented Peptides from Pardachirus Marmoratus Exhibit Stronger Anticancer Activities in In Silico Residue Replacement and Analyses | Bentham Science
Generic placeholder image

Current Drug Discovery Technologies

Editor-in-Chief

ISSN (Print): 1570-1638
ISSN (Online): 1875-6220

Research Article

Short Fragmented Peptides from Pardachirus Marmoratus Exhibit Stronger Anticancer Activities in In Silico Residue Replacement and Analyses

Author(s): Yong Hui Wong and Sau Har Lee*

Volume 21, Issue 6, 2024

Published on: 22 February, 2024

Article ID: e220224227304 Pages: 15

DOI: 10.2174/0115701638290855240207114727

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Cancer is a worldwide issue. It has been observed that conventional therapies face many problems, such as side effects and drug resistance. Recent research reportedly used marine-derived products to treat various diseases and explored their potential in treating cancers.

Objective: This study aims to discover short-length anticancer peptides derived from pardaxin 6 through an in silico approach.

Methods: Fragmented peptides ranging from 5 to 15 amino acids were derived from the pardaxin 6 parental peptide. These peptides were further replaced with one residue and, along with the original fragmented peptides, were predicted for their SVM scores and physicochemical properties. The top 5 derivative peptides were further examined for their toxicity, hemolytic probability, peptide structures, docking models, and energy scores using various web servers. The trend of in silico analysis outputs across 5 to 15 amino acid fragments was further analyzed.

Results: Results showed that when the amino acids were increased, SVM scores of the original fragmented peptides were also increased. Designed peptides had increased SVM scores, which was aligned with previous studies where the single residue replacement transformed the non-anticancer peptide into an anticancer agent. Moreover, in vitro studies validated that the designed peptides retained or enhanced anticancer effects against different cancer cell lines. Interestingly, a decreasing trend was observed in those fragmented derivative peptides.

Conclusion: Single residue replacement in fragmented pardaxin 6 was found to produce stronger anticancer agents through in silico predictions. Through bioinformatics tools, fragmented peptides improved the efficiency of marine-derived drugs with higher efficacy and lower hemolytic effects in treating cancers.

Keywords: In silico, pardaxin, anticancer peptide, marine-derived peptide, peptide design, peptide length, pardachirus marmoratus.

Graphical Abstract
[1]
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71(3): 209-49.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
Mohan G. Recent advances in radiotherapy and its associated side effects in cancer-a review. J Basic Appl Zool 2019; 80(14)
[3]
Ahmad SS, Reinius MAV, Hatcher HM, Ajithkumar TV. Anticancer chemotherapy in teenagers and young adults: Managing long term side effects. BMJ 2016; 354: i4567.
[http://dx.doi.org/10.1136/bmj.i4567] [PMID: 27604249]
[4]
Deslouches B, Di YP. Antimicrobial peptides with selective antitumor mechanisms: Prospect for anticancer applications. Oncotarget 2017; 8(28): 46635-51.
[http://dx.doi.org/10.18632/oncotarget.16743] [PMID: 28422728]
[5]
Tornesello AL, Borrelli A, Buonaguro L, Buonaguro FM, Tornesello ML. Antimicrobial peptides as anticancer agents: Functional properties and biological activities. Molecules 2020; 25(12): 2850.
[http://dx.doi.org/10.3390/molecules25122850] [PMID: 32575664]
[6]
Huang L, Chen D, Wang L, et al. Dermaseptin-PH: A novel peptide with antimicrobial and anticancer activities from the skin secretion of the south american orange-legged leaf frog, pithecopus (phyllomedusa) hypochondrialis. Molecules 2017; 22(10): 1805.
[http://dx.doi.org/10.3390/molecules22101805] [PMID: 29064402]
[7]
Torres MDT, Silva AF, Andrade GP, et al. The wasp venom antimicrobial peptide polybia-CP and its synthetic derivatives display antiplasmodial and anticancer properties. Bioeng Transl Med 2020; 5(3): e10167.
[http://dx.doi.org/10.1002/btm2.10167] [PMID: 33005737]
[8]
Zhou C, Wang Z, Peng X, et al. Discovery of two bombinin peptides with antimicrobial and anticancer activities from the skin secretion of Oriental fire-bellied toad, Bombina orientalis. Chem Biol Drug Des 2018; 91(1): 50-61.
[http://dx.doi.org/10.1111/cbdd.13055] [PMID: 28636781]
[9]
Xie M, Liu D, Yang Y. Anti-cancer peptides: Classification, mechanism of action, reconstruction and modification. Open Biol 2020; 10(7): 200004.
[http://dx.doi.org/10.1098/rsob.200004] [PMID: 32692959]
[10]
Chiangjong W, Chutipongtanate S, Hongeng S. Anticancer peptide: Physicochemical property, functional aspect and trend in clinical application. Int J Oncol 2020; 57(3): 678-96.
[http://dx.doi.org/10.3892/ijo.2020.5099] [PMID: 32705178]
[11]
Shai Y, Fox J, Caratsch C, Shih YL, Edwards C, Lazarovici P. Sequencing and synthesis of pardaxin, a polypeptide from the Red Sea Moses sole with ionophore activity. FEBS Lett 1988; 242(1): 161-6.
[http://dx.doi.org/10.1016/0014-5793(88)81007-X] [PMID: 2462511]
[12]
Shi Y, Wang S, Wu J, Jin X, You J. Pharmaceutical strategies for endoplasmic reticulum-targeting and their prospects of application. J Control Release 2021; 329: 337-52.
[http://dx.doi.org/10.1016/j.jconrel.2020.11.054] [PMID: 33290795]
[13]
Huang TC, Lee JF, Chen JY. Pardaxin, an antimicrobial peptide, triggers caspase-dependent and ROS-mediated apoptosis in HT-1080 cells. Mar Drugs 2011; 9(10): 1995-2009.
[http://dx.doi.org/10.3390/md9101995] [PMID: 22073006]
[14]
Wu SP, Huang TC, Lin CC, Hui CF, Lin CH, Chen JY. Pardaxin, a fish antimicrobial peptide, exhibits antitumor activity toward murine fibrosarcoma in vitro and in vivo. Mar Drugs 2012; 10(12): 1852-72.
[http://dx.doi.org/10.3390/md10081852] [PMID: 23015777]
[15]
Chen YP, Shih PC, Feng CW, et al. Pardaxin activates excessive mitophagy and mitochondria-mediated apoptosis in human ovarian cancer by inducing reactive oxygen species. Antioxidants 2021; 10(12): 1883.
[http://dx.doi.org/10.3390/antiox10121883] [PMID: 34942985]
[16]
Han Y, Cui Z, Li YH, Hsu WH, Lee BH. In vitro and in vivo anticancer activity of pardaxin against proliferation and growth of oral squamous cell carcinoma. Mar Drugs 2015; 14(1): 2.
[http://dx.doi.org/10.3390/md14010002] [PMID: 26703631]
[17]
Lin MC, Hui CF, Chen JY, Wu JL. Truncated antimicrobial peptides from marine organisms retain anticancer activity and antibacterial activity against multidrug-resistant Staphylococcus aureus. Peptides 2013; 44: 139-48.
[http://dx.doi.org/10.1016/j.peptides.2013.04.004] [PMID: 23598079]
[18]
Basith S, Manavalan B, Hwan Shin T, Lee G. Machine intelligence in peptide therapeutics: A next-generation tool for rapid disease screening. Med Res Rev 2020; 40(4): 1276-314.
[http://dx.doi.org/10.1002/med.21658] [PMID: 31922268]
[19]
Branco I, Choupina A. Bioinformatics: New tools and applications in life science and personalized medicine. Appl Microbiol Biotechnol 2021; 105(3): 937-51.
[http://dx.doi.org/10.1007/s00253-020-11056-2] [PMID: 33404829]
[20]
Tyagi A, Kapoor P, Kumar R, Chaudhary K, Gautam A, Raghava GPS. In silico models for designing and discovering novel anticancer peptides. Sci Rep 2013; 3(1): 2984.
[http://dx.doi.org/10.1038/srep02984] [PMID: 24136089]
[21]
Agrawal P, Bhagat D, Mahalwal M, Sharma N, Raghava GPS. AntiCP 2.0: An updated model for predicting anticancer peptides. Brief Bioinform 2021; 22(3): bbaa153.
[http://dx.doi.org/10.1093/bib/bbaa153] [PMID: 32770192]
[22]
Gupta S, Kapoor P, Chaudhary K, Gautam A, Kumar R, Raghava GPS. In silico approach for predicting toxicity of peptides and proteins. PLoS One 2013; 8(9): e73957.
[http://dx.doi.org/10.1371/journal.pone.0073957] [PMID: 24058508]
[23]
Gupta S, Kapoor P, Chaudhary K, Gautam A, Kumar R, Raghava GPS. Peptide toxicity prediction. Methods Mol Biol 2015; 1268: 143-57.
[http://dx.doi.org/10.1007/978-1-4939-2285-7_7] [PMID: 25555724]
[24]
Kumar V, Agrawal P, Kumar R, et al. Prediction of cell-penetrating potential of modified peptides containing natural and chemically modified residues. Front Microbiol 2018; 9: 725.
[http://dx.doi.org/10.3389/fmicb.2018.00725] [PMID: 29706944]
[25]
Timmons PB, Hewage CM. HAPPENN is a novel tool for hemolytic activity prediction for therapeutic peptides which employs neural networks. Sci Rep 2020; 10(1): 10869.
[http://dx.doi.org/10.1038/s41598-020-67701-3] [PMID: 32616760]
[26]
Timmons PB, Hewage CM. ENNAACT is a novel tool which employs neural networks for anticancer activity classification for therapeutic peptides. Biomed Pharmacother 2021; 133: 111051.
[http://dx.doi.org/10.1016/j.biopha.2020.111051] [PMID: 33254015]
[27]
Tyagi A, Tuknait A, Anand P, et al. CancerPPD: A database of anticancer peptides and proteins. Nucleic Acids Res 2015; 43(D1): D837-43.
[http://dx.doi.org/10.1093/nar/gku892] [PMID: 25270878]
[28]
Microsoft Corporation. 2018. Available from: https://office.microsoft.com/excel
[29]
E-kobon T, Thongararm P, Roytrakul S, Meesuk L, Chumnanpuen P. Prediction of anticancer peptides against MCF-7 breast cancer cells from the peptidomes of Achatina fulica mucus fractions. Comput Struct Biotechnol J 2016; 14: 49-57.
[http://dx.doi.org/10.1016/j.csbj.2015.11.005] [PMID: 26862373]
[30]
Lamiable A, Thévenet P, Rey J, Vavrusa M, Derreumaux P, Tufféry P. PEP-FOLD3: Faster de novo structure prediction for linear peptides in solution and in complex. Nucleic Acids Res 2016; 44(W1): W449-54.
[http://dx.doi.org/10.1093/nar/gkw329] [PMID: 27131374]
[31]
Zhou P, Jin B, Li H, Huang SY. HPEPDOCK: A web server for blind peptide–protein docking based on a hierarchical algorithm. Nucleic Acids Res 2018; 46(W1): W443-50.
[http://dx.doi.org/10.1093/nar/gky357] [PMID: 29746661]
[32]
GraphPad Prism version 8.0.0 for Windows San Diego. Available from: www.graphpad.com
[33]
Manzoor M, Singh J, Gani A. Exploration of bioactive peptides from various origin as promising nutraceutical treasures: In vitro, In silico and in vivo studies. Food Chem 2022; 373: 131395.
[34]
Liscano Y, Oñate-Garzón J, Delgado JP. Peptides with dual antimicrobial-anticancer activity: Strategies to overcome peptide limitations and rational design of anticancer peptides. Molecules 2020; 25(18): 4245.
[http://dx.doi.org/10.3390/molecules25184245] [PMID: 32947811]
[35]
Shoombuatong W, Schaduangrat N, Nantasenamat C. Unraveling the bioactivity of anticancer peptides as deduced from machine learning. EXCLI J 2018; 17: 734-52.
[PMID: 30190664]
[36]
Lee WW, Kim WS, Ahn G, et al. Separation of glycine-rich proteins from sea hare eggs and their anti-cancer activity against U937 leukemia cell line. EXCLI J 2016; 15: 329-42.
[PMID: 27366143]
[37]
Lu J, Chen Z. Isolation, characterization and anti-cancer activity of SK84, a novel glycine-rich antimicrobial peptide from Drosophila virilis. Peptides 2010; 31(1): 44-50.
[http://dx.doi.org/10.1016/j.peptides.2009.09.028] [PMID: 19799950]
[38]
Maraming P, Klaynongsruang S, Boonsiri P, et al. Anti-metastatic effects of cationic KT2 peptide (a Lysine/Tryptophan-rich Peptide) on human melanoma A375.S2 cells. In Vivo 2021; 35(1): 215-27.
[http://dx.doi.org/10.21873/invivo.12250] [PMID: 33402468]
[39]
Roomi MW, Ivanov V, Kalinovsky T, Niedzwiecki A, Rath M. In vivo antitumor effect of ascorbic acid, lysine, proline and green tea extract on human prostate cancer PC-3 xenografts in nude mice: Evaluation of tumor growth and immunohistochemistry. In Vivo 2005; 19(1): 179-83.
[PMID: 15796171]
[40]
Wang C, Dong S, Zhang L, et al. Cell surface binding, uptaking and anticancer activity of L-K6, a lysine/leucine-rich peptide, on human breast cancer MCF-7 cells. Sci Rep 2017; 7(1): 8293.
[http://dx.doi.org/10.1038/s41598-017-08963-2] [PMID: 28811617]
[41]
Vuillermoz B, Khoruzhenko A, D’Onofrio MF, et al. The small leucine-rich proteoglycan lumican inhibits melanoma progression. Exp Cell Res 2004; 296(2): 294-306.
[http://dx.doi.org/10.1016/j.yexcr.2004.02.005] [PMID: 15149859]
[42]
Zeltz C, Brézillon S, Perreau C, Ramont L, Maquart FX, Wegrowski YL. A leucine-rich repeat 9-derived peptide from human lumican inhibiting melanoma cell migration. FEBS Lett 2009; 583(18): 3027-32.
[http://dx.doi.org/10.1016/j.febslet.2009.08.012] [PMID: 19686741]
[43]
Sharifi F, Sharifi I, Babaei Z, Alahdin S, Afgar A. Bioinformatics evaluation of anticancer properties of GP63 protein-derived peptides on MMP2 protein of melanoma cancer. J Pathol Inform 2023; 14: 100190.
[http://dx.doi.org/10.1016/j.jpi.2023.100190] [PMID: 36700237]
[44]
Thennarasu S, Nagaraj R. Specific antimicrobial and hemolytic activities of 18-residue peptides derived from the amino terminal region of the toxin pardaxin. Protein Eng Des Sel 1996; 9(12): 1219-24.
[http://dx.doi.org/10.1093/protein/9.12.1219] [PMID: 9010936]
[45]
Chen Y, Guarnieri MT, Vasil AI, Vasil ML, Mant CT, Hodges RS. Role of peptide hydrophobicity in the mechanism of action of alpha-helical antimicrobial peptides. Antimicrob Agents Chemother 2007; 51(4): 1398-406.
[http://dx.doi.org/10.1128/AAC.00925-06] [PMID: 17158938]
[46]
Ahmaditaba MA, Shahosseini S, Daraei B, Zarghi A, Houshdar Tehrani MH. Design, synthesis, and biological evaluation of new peptide analogues as selective COX-2 inhibitors. Arch Pharm 2017; 350(10): 1700158.
[http://dx.doi.org/10.1002/ardp.201700158] [PMID: 28872704]
[47]
Umayaparvathi S, Meenakshi S, Vimalraj V, Arumugam M, Sivagami G, Balasubramanian T. Antioxidant activity and anticancer effect of bioactive peptide from enzymatic hydrolysate of oyster (Saccostrea cucullata). Biomed Prevent Nutr 2014; 4(3): 343-53.
[http://dx.doi.org/10.1016/j.bionut.2014.04.006]
[48]
Cheng J, Li W, Kang B, et al. Tryptophan derivatives regulate the transcription of Oct4 in stem-like cancer cells. Nat Commun 2015; 6(1): 7209.
[http://dx.doi.org/10.1038/ncomms8209] [PMID: 26059097]
[49]
Arumugam N, Almansour AI, Kumar RS, et al. Regio- and diastereoselective synthesis of anticancer spirooxindoles derived from tryptophan and histidine via three-component 1,3-dipolar cycloadditions in an ionic liquid. Tetrahedron 2018; 74(38): 5358-66.
[http://dx.doi.org/10.1016/j.tet.2018.04.032]
[50]
Tidjani Rahmouni N, Bensiradj NH, Megatli SA, Djebbar S, Benali Baitich O. New mixed amino acids complexes of iron(III) and zinc(II) with isonitrosoacetophenone: Synthesis, spectral characterization, DFT study and anticancer activity. Spectrochim Acta A Mol Biomol Spectrosc 2019; 213: 235-48.
[http://dx.doi.org/10.1016/j.saa.2019.01.042] [PMID: 30695742]
[51]
Mohammed Asik R, Manikkaraja C, Tamil Surya K, et al. Anticancer potential of l-histidine-capped silver nanoparticles against human cervical cancer cells (SiHA). Nanomaterials 2021; 11(11): 3154.
[http://dx.doi.org/10.3390/nano11113154] [PMID: 34835918]
[52]
Locasale JW. Serine, glycine and one-carbon units: cancer metabolism in full circle. Nat Rev Cancer 2013; 13(8): 572-83.
[http://dx.doi.org/10.1038/nrc3557] [PMID: 23822983]
[53]
Maddocks ODK, Athineos D, Cheung EC, et al. Modulating the therapeutic response of tumours to dietary serine and glycine starvation. Nature 2017; 544(7650): 372-6.
[http://dx.doi.org/10.1038/nature22056] [PMID: 28425994]
[54]
Brito RO, Marques EF, Silva SG, et al. Physicochemical and toxicological properties of novel amino acid-based amphiphiles and their spontaneously formed catanionic vesicles. Coll Surf B Biointerf 2009; 72(1): 80-7.
[http://dx.doi.org/10.1016/j.colsurfb.2009.03.017] [PMID: 19409764]
[55]
Silva SG, Alves C, Cardoso AMS, et al. Synthesis of gemini surfactants and evaluation of their interfacial and cytotoxic properties: Exploring the multifunctionality of serine as headgroup. Eur J Org Chem 2013; 2013(9): 1758-69.
[http://dx.doi.org/10.1002/ejoc.201201396]
[56]
Silva SG, Vale MLC, Marques EF. Size, charge, and stability of fully serine-based catanionic vesicles: towards versatile biocompatible nanocarriers. Chemistry 2015; 21(10): 4092-101.
[http://dx.doi.org/10.1002/chem.201406111] [PMID: 25649414]
[57]
Gonçalves Lopes RCF, Silvestre OF, Faria AR, C do Vale ML, Marques EF, Nieder JB. Surface charge tunable catanionic vesicles based on serine-derived surfactants as efficient nanocarriers for the delivery of the anticancer drug doxorubicin. Nanoscale 2019; 11(13): 5932-41.
[http://dx.doi.org/10.1039/C8NR06346J] [PMID: 30556563]
[58]
Guru A, Lite C, Freddy AJ, et al. Intracellular ROS scavenging and antioxidant regulation of WL15 from cysteine and glycine-rich protein 2 demonstrated in zebrafish in vivo model. Dev Comp Immunol 2021; 114: 103863.
[http://dx.doi.org/10.1016/j.dci.2020.103863] [PMID: 32918928]
[59]
Mahmoud WH, Mohamed GG, El-Dessouky MMI. Synthesis, structural characterization, in vitro antimicrobial and anticancer activity studies of ternary metal complexes containing glycine amino acid and the anti-inflammatory drug lornoxicam. J Mol Struct 2015; 1082: 12-22.
[http://dx.doi.org/10.1016/j.molstruc.2014.10.014]
[60]
Tada N, Horibe T, Haramoto M, Ohara K, Kohno M, Kawakami K. A single replacement of histidine to arginine in EGFR-lytic hybrid peptide demonstrates the improved anticancer activity. Biochem Biophys Res Commun 2011; 407(2): 383-8.
[http://dx.doi.org/10.1016/j.bbrc.2011.03.030] [PMID: 21396910]
[61]
Puthraya KH, Srivastava TS, Amonkar AJ, Adwankar MK, Chitnis MP. Some potential anticancer palladium(II) complexes of 2,2′-bipyridine and amino acids. J Inorg Biochem 1986; 26(1): 45-54.
[http://dx.doi.org/10.1016/0162-0134(86)80035-6] [PMID: 3944601]
[62]
Chaudhary K, Kumar R, Singh S, et al. A web server and mobile app for computing hemolytic potency of peptides. Sci Rep 2016; 6(1): 22843.
[http://dx.doi.org/10.1038/srep22843] [PMID: 26953092]
[63]
Idiong G, Won A, Ruscito A, Leung BO, Hitchcock AP, Ianoul A. Investigating the effect of a single glycine to alanine substitution on interactions of antimicrobial peptide latarcin 2a with a lipid membrane. Eur Biophys J 2011; 40(9): 1087-100.
[http://dx.doi.org/10.1007/s00249-011-0726-z] [PMID: 21748492]
[64]
Robles-Loaiza AA, Pinos-Tamayo EA, Mendes B, et al. Traditional and computational screening of non-toxic peptides and approaches to improving selectivity. Pharmaceuticals 2022; 15(3): 323.
[http://dx.doi.org/10.3390/ph15030323] [PMID: 35337121]
[65]
Niidome T, Matsuyama N, Kunihara M, Hatakeyama T, Aoyagi H. Effect of chain length of cationic model peptides on antibacterial activity. Bull Chem Soc Jpn 2005; 78(3): 473-6.
[http://dx.doi.org/10.1246/bcsj.78.473]
[66]
Kalafatovic D, Giralt E. Cell-penetrating peptides: Design strategies beyond primary structure and amphipathicity. Molecules 2017; 22(11): 1929.
[http://dx.doi.org/10.3390/molecules22111929] [PMID: 29117144]
[67]
Kauffman WB, Fuselier T, He J, Wimley WC. Mechanism matters: A taxonomy of cell penetrating peptides. Trends Biochem Sci 2015; 40(12): 749-64.
[http://dx.doi.org/10.1016/j.tibs.2015.10.004] [PMID: 26545486]
[68]
Kang Z, Ding G, Meng Z, Meng Q. The rational design of cell-penetrating peptides for application in delivery systems. Peptides 2019; 121: 170149.
[http://dx.doi.org/10.1016/j.peptides.2019.170149] [PMID: 31491454]
[69]
Huang Y, Feng Q, Yan Q, Hao X, Chen Y. Alpha-helical cationic anticancer peptides: A promising candidate for novel anticancer drugs. Mini Rev Med Chem 2015; 15(1): 73-81.
[http://dx.doi.org/10.2174/1389557514666141107120954] [PMID: 25382016]
[70]
Dennison S, Whittaker M, Harris F, Phoenix D. Anticancer alpha-helical peptides and structure/function relationships underpinning their interactions with tumour cell membranes. Curr Protein Pept Sci 2006; 7(6): 487-99.
[http://dx.doi.org/10.2174/138920306779025611] [PMID: 17168782]
[71]
Corrêa JAF, Evangelista AG, Nazareth TDM, Luciano FB. Fundamentals on the molecular mechanism of action of antimicrobial peptides. Materialia 2019; 8.
[72]
Ehrenstein G, Lecar H. Electrically gated ionic channels in lipid bilayers. Q Rev Biophys 1977; 10(1): 1-34.
[http://dx.doi.org/10.1017/S0033583500000123] [PMID: 327501]
[73]
Oren Z, Shai Y. Mode of action of linear amphipathic α-helical antimicrobial peptides. Biopolymers 1998; 47(6): 451-63.
[http://dx.doi.org/10.1002/(SICI)1097-0282(1998)47:6<451::AID-BIP4>3.0.CO;2-F] [PMID: 10333737]
[74]
Hollingsworth SA, Dror RO. Molecular dynamics simulation for all. Neuron 2018; 99(6): 1129-43.
[http://dx.doi.org/10.1016/j.neuron.2018.08.011] [PMID: 30236283]
[75]
Hadianamrei R, Anas Tomeh M, Brown S, Wang J, Zhao X. Rationally designed short cationic α-helical peptides with selective anticancer activity. J Coll Int Sci 2022; 607: 488-501.
[76]
Giménez-Andrés M, Čopič A, Antonny B. The many faces of amphipathic helices. Biomolecules 2018; 8(3): 45.
[http://dx.doi.org/10.3390/biom8030045] [PMID: 29976879]
[77]
Abbas N, Tan HD, Goh BH, Yap WH, Tang YQ. In silico study of anticancer and antimicrobial peptides derived from cycloviolacin O2 (CyO2). Biointerface Res Appl Chem 2023; 13(5)
[78]
Papo N, Shai Y. New lytic peptides based on the D,L-amphipathic helix motif preferentially kill tumor cells compared to normal cells. Biochemistry 2003; 42(31): 9346-54.
[http://dx.doi.org/10.1021/bi027212o] [PMID: 12899621]
[79]
Pfeffer C, Singh A. Apoptosis: A target for anticancer therapy. Int J Mol Sci 2018; 19(2): 448.
[http://dx.doi.org/10.3390/ijms19020448] [PMID: 29393886]
[80]
Zaman S, Wang R, Gandhi V. Targeting the apoptosis pathway in hematologic malignancies. Leuk Lymphoma 2014; 55(9): 1980-92.
[http://dx.doi.org/10.3109/10428194.2013.855307] [PMID: 24295132]
[81]
Agudelo-Quintero ML, Luzardo-Ocampo I, Lopera-Rodríguez JA. Bioactive compounds from andean berry (Vaccinium meridionale Swartz) juice inhibited cell viability and proliferation from SW480 and SW620 human colon adenocarcinoma cells. Biol Life Sci Forum 2022; 18(1): 17.
[82]
Guzmán L, Villalón K, Marchant MJ, et al. In vitro evaluation and molecular docking of QS-21 and quillaic acid from Quillaja saponaria Molina as gastric cancer agents. Sci Rep 2020; 10(1): 10534.
[http://dx.doi.org/10.1038/s41598-020-67442-3] [PMID: 32601436]
[83]
Zuñiga O, Vázquez VH, Velázquez AM, et al. Molecular Docking of 4-Tert-buthyl-bis-(2,6-thiomorpholin-4-ylmethyl)-1-phenol (LQM319) on Fas Receptor (CD95). J Cancer Ther 2013; 4(1): 176-81.
[http://dx.doi.org/10.4236/jct.2013.41026]
[84]
Jeong W, Bu J, Kubiatowicz LJ, Chen SS, Kim Y, Hong S. Peptide–nanoparticle conjugates: A next generation of diagnostic and therapeutic platforms? Nano Converg 2018; 5(1): 38.
[http://dx.doi.org/10.1186/s40580-018-0170-1] [PMID: 30539365]
[85]
Sonju JJ, Dahal A, Singh SS, Jois SD. Peptide-functionalized liposomes as therapeutic and diagnostic tools for cancer treatment. J Control Release 2021; 329: 624-44.
[http://dx.doi.org/10.1016/j.jconrel.2020.09.055] [PMID: 33010333]
[86]
O’Brien C, Flower DR, Feighery C. Peptide length significantly influences in vitro affinity for MHC class II molecules. Immunome Res 2008; 4(1): 6.
[http://dx.doi.org/10.1186/1745-7580-4-6] [PMID: 19036163]
[87]
Burdukiewicz M, Sidorczuk K, Rafacz D, et al. CancerGram: An effective classifier for differentiating anticancer from antimicrobial peptides. Pharmaceutics 2020; 12(11): 1045.
[http://dx.doi.org/10.3390/pharmaceutics12111045] [PMID: 33142753]
[88]
Gabernet G, Gautschi D, Müller AT, et al. In silico design and optimization of selective membranolytic anticancer peptides. Sci Rep 2019; 9(1): 11282.
[http://dx.doi.org/10.1038/s41598-019-47568-9] [PMID: 31375699]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy