Xanthine Oxidoreductase in the Pathogenesis of Endothelial Dysfunction: An Update | Bentham Science
Generic placeholder image

Current Hypertension Reviews

Editor-in-Chief

ISSN (Print): 1573-4021
ISSN (Online): 1875-6506

Review Article

Xanthine Oxidoreductase in the Pathogenesis of Endothelial Dysfunction: An Update

Author(s): Rajat Mudgal and Sanjiv Singh*

Volume 20, Issue 1, 2024

Published on: 02 February, 2024

Page: [10 - 22] Pages: 13

DOI: 10.2174/0115734021277772240124075120

Price: $65

Open Access Journals Promotions 2
Abstract

Xanthine oxidoreductase (XOR) is a rate-limiting enzyme in the formation of uric acid (UA) and is involved in the generation of reactive oxygen species (ROS). Overproduction of ROS has been linked to the pathogenesis of hypertension, atherosclerosis, and cardiovascular disease, with multiple studies over the last 30 years demonstrating that XOR inhibition is beneficial. The involvement of XOR and its constituents in the advancement of chronic inflammation and ROS, which are responsible for endothelial dysfunction, is the focus of this evidence-based review. An overabundance of XOR products and ROS appears to drive the inflammatory response, resulting in significant endothelium damage. It has also been demonstrated that XOR activity and ED are connected. Diabetes, hypertension, and cardiovascular disease are all associated with endothelial dysfunction. ROS mainly modifies the activity of vascular cells and can be important in normal vascular physiology as well as the development of vascular disease. Suppressing XOR activity appears to decrease endothelial dysfunction, probably because it lessens the generation of reactive oxygen species and the oxidative stress brought on by XOR. Although there has long been a link between higher vascular XOR activity and worse clinical outcomes, new research suggests a different picture in which positive results are mediated by XOR enzymatic activity. Here in this study, we aimed to review the association between XOR and vascular endothelial dysfunction. The prevention and treatment approaches against vascular endothelial dysfunction in atherosclerotic disease.

Keywords: Endothelial dysfunctions, xanthine oxidoreductase, vascular physiology, inflammation, ROS, vascular cells.

[1]
Crouch SH, Botha-Le Roux S, Delles C, Graham LA, Schutte AE. Inflammation and hypertension development: A longitudinal analysis of the African-PREDICT study. Int J Cardiol Hypert 2020; 7: 100067.
[http://dx.doi.org/10.1016/j.ijchy.2020.100067] [PMID: 33392493]
[2]
Deanfield JE, Halcox JP, Rabelink TJ. Endothelial function and dysfunction: Testing and clinical relevance. Circulation 2007; 115(10): 1285-95.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.106.652859] [PMID: 17353456]
[3]
Yang G, Lucas R, Caldwell R, Yao L, Romero MJ, Caldwell RW. Novel mechanisms of endothelial dysfunction in diabetes. J Cardiovasc Dis Res 2010; 1(2): 59-63.
[http://dx.doi.org/10.4103/0975-3583.64432] [PMID: 20877687]
[4]
Daiber A, Andreadou I, Oelze M, Davidson SM, Hausenloy DJ. Discovery of new therapeutic redox targets for cardioprotection against ischemia/reperfusion injury and heart failure. Free Radic Biol Med 2021; 163: 325-43.
[http://dx.doi.org/10.1016/j.freeradbiomed.2020.12.026] [PMID: 33359685]
[5]
Pasalic D, Marinkovic N, Feher-Turkovic L. Uric acid as one of the important factors in multifactorial disorders - facts and controversies. Biochem Med 2012; 22(1): 63-75.
[http://dx.doi.org/10.11613/BM.2012.007] [PMID: 22384520]
[6]
Boroumand N, Samarghandian S, Hashemy SI. Immunomodulatory, anti-inflammatory, and antioxidant effects of curcumin. J Herbmed Pharmacol 2018; 7(4): 211-9.
[http://dx.doi.org/10.15171/jhp.2018.33]
[7]
Glantzounis G, Tsimoyiannis E, Kappas A, Galaris D. Uric acid and oxidative stress. Curr Pharm Des 2005; 11(32): 4145-51.
[http://dx.doi.org/10.2174/138161205774913255] [PMID: 16375736]
[8]
Boueiz A, Damarla M, Hassoun PM. Xanthine oxidoreductase in respiratory and cardiovascular disorders. Am J Physiol Lung Cell Mol Physiol 2008; 294(5): L830-40.
[http://dx.doi.org/10.1152/ajplung.00007.2008] [PMID: 18344415]
[9]
Madamanchi NR, Vendrov A, Runge MS. Oxidative stress and vascular disease. Arterioscler Thromb Vasc Biol 2005; 25(1): 29-38.
[http://dx.doi.org/10.1161/01.ATV.0000150649.39934.13] [PMID: 15539615]
[10]
Fleming A. Containing papers of a biological character. Proc R Soc Lond, B 1922; 93: 306-17.
[11]
De Renzo EC. Chemistry and biochemistry of xanthine oxidase. Adv Enzymol Relat Areas Mol Biol 1956; 17: 293-328.
[PMID: 13313312]
[12]
Kooij A. A re-evaluation of the tissue distribution and physiology of xanthine oxidoreductase. Histochem J 1994; 26(12): 889-915.
[http://dx.doi.org/10.1007/BF02388567] [PMID: 7896566]
[13]
Hille R, Nishino T. Xanthine oxidase and xanthine dehydrogenase. FASEB J 1995; 9(11): 995-1003.
[http://dx.doi.org/10.1096/fasebj.9.11.7649415] [PMID: 7649415]
[14]
Harrison R. Structure and function of xanthine oxidoreductase: Where are we now? Free Radic Biol Med 2002; 33(6): 774-97.
[http://dx.doi.org/10.1016/S0891-5849(02)00956-5] [PMID: 12208366]
[15]
Singh S, Aggarwal P, Ravichandiran V. Immunological response of the respiratory tract in the SARS-CoV-2 infection. Coronaviruses 2021; 2(9): e020721191471.
[http://dx.doi.org/10.2174/2666796702666210216143545]
[16]
Sanders SA, Eisenthal R, Harrison R. NADH oxidase activity of human xanthine oxidoreductase--generation of superoxide anion. Eur J Biochem 1997; 245(3): 541-8.
[http://dx.doi.org/10.1111/j.1432-1033.1997.00541.x] [PMID: 9182988]
[17]
Battelli MG, Bolognesi A, Polito L. Pathophysiology of circulating xanthine oxidoreductase: New emerging roles for a multi-tasking enzyme. Biochim Biophys Acta Mol Basis Dis 2014; 1842(9): 1502-17.
[http://dx.doi.org/10.1016/j.bbadis.2014.05.022] [PMID: 24882753]
[18]
Nishino T, Okamoto K, Kawaguchi Y, et al. The C‐terminal peptide plays a role in the formation of an intermediate form during the transition between xanthine dehydrogenase and xanthine oxidase. FEBS J 2015; 282(16): 3075-90.
[http://dx.doi.org/10.1111/febs.13277] [PMID: 25817260]
[19]
Granger DN, Kvietys PR. Reperfusion injury and reactive oxygen species: The evolution of a concept. Redox Biol 2015; 6: 524-51.
[http://dx.doi.org/10.1016/j.redox.2015.08.020] [PMID: 26484802]
[20]
Battelli MG, Polito L, Bortolotti M, Bolognesi A. Xanthine oxidoreductase-derived reactive species: Physiological and pathological effects. Oxid Med Cell Longev 2016; 2016: 3527579.
[http://dx.doi.org/10.1155/2016/3527579]
[21]
Al-Shehri SS, Duley JA, Bansal N. Xanthine oxidase-lactoperoxidase system and innate immunity: Biochemical actions and physiological roles. Redox Biol 2020; 34: 101524.
[http://dx.doi.org/10.1016/j.redox.2020.101524] [PMID: 32334145]
[22]
Battelli MG, Polito L, Bolognesi A. Xanthine oxidoreductase in atherosclerosis pathogenesis: Not only oxidative stress. Atherosclerosis 2014; 237(2): 562-7.
[http://dx.doi.org/10.1016/j.atherosclerosis.2014.10.006] [PMID: 25463089]
[23]
Battelli MG, Polito L, Bortolotti M, Bolognesi A. Xanthine oxidoreductase in cancer: More than a differentiation marker. Cancer Med 2016; 5(3): 546-57.
[http://dx.doi.org/10.1002/cam4.601] [PMID: 26687331]
[24]
Volterrani M, Iellamo F, Sposato B, Romeo F. Uric acid lowering therapy in cardiovascular diseases. Int J Cardiol 2016; 213: 20-2.
[http://dx.doi.org/10.1016/j.ijcard.2015.08.088] [PMID: 26386814]
[25]
Soletsky B, Feig DI. Uric acid reduction rectifies prehypertension in obese adolescents. Hypertension 2012; 60(5): 1148-56.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.112.196980] [PMID: 23006736]
[26]
Gallo G, Volpe M, Savoia C. Endothelial dysfunction in hypertension: Current concepts and clinical implications. Front Med 2022; 8: 798958.
[http://dx.doi.org/10.3389/fmed.2021.798958] [PMID: 35127755]
[27]
González J, Valls N, Brito R, Rodrigo R. Essential hypertension and oxidative stress: New insights. World J Cardiol 2014; 6(6): 353-66.
[http://dx.doi.org/10.4330/wjc.v6.i6.353] [PMID: 24976907]
[28]
Bonetti PO, Lerman LO, Lerman A. Endothelial dysfunction. Arterioscler Thromb Vasc Biol 2003; 23(2): 168-75.
[http://dx.doi.org/10.1161/01.ATV.0000051384.43104.FC] [PMID: 12588755]
[29]
Bulua AC, Simon A, Maddipati R, et al. Mitochondrial reactive oxygen species promote production of proinflammatory cytokines and are elevated in TNFR1-associated periodic syndrome (TRAPS). J Exp Med 2011; 208(3): 519-33.
[http://dx.doi.org/10.1084/jem.20102049] [PMID: 21282379]
[30]
Nakahira K, Haspel JA, Rathinam VAK, et al. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat Immunol 2011; 12(3): 222-30.
[http://dx.doi.org/10.1038/ni.1980] [PMID: 21151103]
[31]
Meghana A, Obulapathi U, Singh S. Indian cow urine as a therapeutic alternative in treatment of human diseases: A review. AYUHOM 2021; 8(2): 57-63.
[32]
Landmesser U, Dikalov S, Price SR, et al. Oxidation of tetrahydrobiopterin leads to uncoupling of endothelial cell nitric oxide synthase in hypertension. J Clin Invest 2003; 111(8): 1201-9.
[http://dx.doi.org/10.1172/JCI200314172] [PMID: 12697739]
[33]
Liaudet L, Vassalli G, Pacher P. Role of peroxynitrite in the redox regulation of cell signal transduction pathways. Front Biosci 2009; 14: 4809.
[http://dx.doi.org/10.2741/3569]
[34]
Mathews MT, Berk BC. PARP-1 inhibition prevents oxidative and nitrosative stress-induced endothelial cell death via transactivation of the VEGF receptor 2. Arterioscler Thromb Vasc Biol 2008; 28(4): 711-7.
[http://dx.doi.org/10.1161/ATVBAHA.107.156406] [PMID: 18239155]
[35]
Handa M, Aparnasai RG, Panicker N, Singh S, Ruwali M. Recent trends of extracellular vesicles for therapeutic intervention of brain-related diseases. Nanomedical Drug Delivery for Neurodegenerative Diseases. Elsevier 2022; pp. 119-28.
[http://dx.doi.org/10.1016/B978-0-323-85544-0.00007-1]
[36]
Puddu P, Puddu GM, Cravero E, Rosati M, Muscari A. The molecular sources of reactive oxygen species in hypertension. Blood Press 2008; 17(2): 70-7.
[http://dx.doi.org/10.1080/08037050802029954] [PMID: 18568695]
[37]
Zalba G, Beaumont J, José GS, Fortuño A, Fortuño MA, Díez J. Vascular oxidant stress: Molecular mechanisms and pathophysiological implications. J Physiol Biochem 2000; 56(1): 57-64.
[http://dx.doi.org/10.1007/BF03179777] [PMID: 10879682]
[38]
Münzel T, Gori T, Bruno RM, Taddei S. Is oxidative stress a therapeutic target in cardiovascular disease? Eur Heart J 2010; 31(22): 2741-8.
[http://dx.doi.org/10.1093/eurheartj/ehq396] [PMID: 20974801]
[39]
Montezano AC, Touyz RM. Reactive oxygen species and endothelial function--role of nitric oxide synthase uncoupling and Nox family nicotinamide adenine dinucleotide phosphate oxidases. Basic Clin Pharmacol Toxicol 2012; 110(1): 87-94.
[http://dx.doi.org/10.1111/j.1742-7843.2011.00785.x] [PMID: 21883939]
[40]
Dikalov S. Cross talk between mitochondria and NADPH oxidases. Free Radic Biol Med 2011; 51(7): 1289-301.
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.06.033] [PMID: 21777669]
[41]
Widlansky ME, Gutterman DD. Regulation of endothelial function by mitochondrial reactive oxygen species. Antioxid Redox Signal 2011; 15(6): 1517-30.
[http://dx.doi.org/10.1089/ars.2010.3642] [PMID: 21194353]
[42]
Chang JC, Kou S-J, Lin W-T, Liu C-S. Regulatory role of mitochondria in oxidative stress and atherosclerosis. World J Cardiol 2010; 2(6): 150-9.
[http://dx.doi.org/10.4330/wjc.v2.i6.150] [PMID: 21160733]
[43]
Kudin AP, Malinska D, Kunz WS. Sites of generation of reactive oxygen species in homogenates of brain tissue determined with the use of respiratory substrates and inhibitors. Biochim Biophys Acta Bioenerg 2008; 1777(7-8): 689-95.
[http://dx.doi.org/10.1016/j.bbabio.2008.05.010] [PMID: 18510942]
[44]
Kwak HB, Lee Y, Kim JH, Van Remmen H, Richardson AG, Lawler JM. MnSOD overexpression reduces fibrosis and pro-apoptotic signaling in the aging mouse heart. J Gerontol A Biol Sci Med Sci 2015; 70(5): 533-44.
[http://dx.doi.org/10.1093/gerona/glu090] [PMID: 25016531]
[45]
Singh S, Aggarwal P, Sharma S, Ravichandiran V. Microorganisms in pathogenesis and management of Ulcerative Colitis (UC). Role of Microorganisms in Pathogenesis and Management of Autoimmune Diseases: Volume II: Kidney, Central Nervous System, Eye, Blood, Blood Vessels & Bowel. Springer 2023.
[46]
Doughan AK, Harrison DG. Molecular mechanisms of angiotensin II-mediated mitochondrial dysfunction: linking mitochondrial oxidative damage and vascular endothelial dysfunction. Circ Res 2008; 102(4): 488-96.
[47]
Wind S, Beuerlein K, Eucker T, et al. Comparative pharmacology of chemically distinct NADPH oxidase inhibitors. Br J Pharmacol 2010; 161(4): 885-98.
[http://dx.doi.org/10.1111/j.1476-5381.2010.00920.x] [PMID: 20860666]
[48]
Drummond GR. Endothelial NADPH oxidases: which NOX to target in vascular disease? Trends Endocrinol Metab 2014; 25(9): 452-63.
[49]
Barman SA, Chen F, Su Y, et al. NADPH oxidase 4 is expressed in pulmonary artery adventitia and contributes to hypertensive vascular remodeling. Arterioscler Thromb Vasc Biol 2014; 34(8): 1704-15.
[http://dx.doi.org/10.1161/ATVBAHA.114.303848] [PMID: 24947524]
[50]
Schramm A, Matusik P, Osmenda G, Guzik TJ. Targeting NADPH oxidases in vascular pharmacology. Vascul Pharmacol 2012; 56(5-6): 216-31.
[http://dx.doi.org/10.1016/j.vph.2012.02.012] [PMID: 22405985]
[51]
Dimmeler S, Fleming I, Fisslthaler B, Hermann C, Busse R, Zeiher AM. Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature 1999; 399(6736): 601-5.
[http://dx.doi.org/10.1038/21224] [PMID: 10376603]
[52]
Moens AL, Kass DA. Therapeutic potential of tetrahydrobiopterin for treating vascular and cardiac disease. J Cardiovasc Pharmacol 2007; 50(3): 238-46.
[http://dx.doi.org/10.1097/FJC.0b013e318123f854] [PMID: 17878750]
[53]
Weseler AR, Bast A. Oxidative stress and vascular function: Implications for pharmacologic treatments. Curr Hypertens Rep 2010; 12(3): 154-61.
[http://dx.doi.org/10.1007/s11906-010-0103-9] [PMID: 20424954]
[54]
Stocker R, Keaney JF Jr. New insights on oxidative stress in the artery wall. J Thromb Haemost 2005; 3(8): 1825-34.
[http://dx.doi.org/10.1111/j.1538-7836.2005.01370.x] [PMID: 16102049]
[55]
Galbusera C, Orth P, Fedida D, Spector T. Superoxide radical production by allopurinol and xanthine oxidase. Biochem Pharmacol 2006; 71(12): 1747-52.
[http://dx.doi.org/10.1016/j.bcp.2006.02.008] [PMID: 16650385]
[56]
Harris CM, Massey V. The reaction of reduced xanthine dehydrogenase with molecular oxygen. Reaction kinetics and measurement of superoxide radical. J Biol Chem 1997; 272(13): 8370-9.
[http://dx.doi.org/10.1074/jbc.272.13.8370] [PMID: 9079661]
[57]
Berry CE, Hare JM. Xanthine oxidoreductase and cardiovascular disease: molecular mechanisms and pathophysiological implications. J Physiol 2004; 555(3): 589-606.
[http://dx.doi.org/10.1113/jphysiol.2003.055913] [PMID: 14694147]
[58]
Hille R. Molybdenum-containing hydroxylases. Arch Biochem Biophys 2005; 433(1): 107-16.
[http://dx.doi.org/10.1016/j.abb.2004.08.012] [PMID: 15581570]
[59]
Duncan JG, Ravi R, Stull LB, Murphy AM. Chronic xanthine oxidase inhibition prevents myofibrillar protein oxidation and preserves cardiac function in a transgenic mouse model of cardiomyopathy. Am J Physiol Heart Circ Physiol 2005; 289(4): H1512-8.
[http://dx.doi.org/10.1152/ajpheart.00168.2005] [PMID: 15863459]
[60]
Stull LB, Leppo MK, Szweda L, Gao WD, Marbán E. Chronic treatment with allopurinol boosts survival and cardiac contractility in murine postischemic cardiomyopathy. Circ Res 2004; 95(10): 1005-11.
[http://dx.doi.org/10.1161/01.RES.0000148635.73331.c5] [PMID: 15499028]
[61]
Kittleson MM, Hare JM. Xanthine oxidase inhibitors: An emerging class of drugs for heart failure. Eur Heart J 2005; 26(15): 1458-60.
[http://dx.doi.org/10.1093/eurheartj/ehi321] [PMID: 15917281]
[62]
Godber BLJ, Doel JJ, Sapkota GP, et al. Reduction of nitrite to nitric oxide catalyzed by xanthine oxidoreductase. J Biol Chem 2000; 275(11): 7757-63.
[http://dx.doi.org/10.1074/jbc.275.11.7757] [PMID: 10713088]
[63]
Li H, Samouilov A, Liu X, Zweier JL. Characterization of the magnitude and kinetics of xanthine oxidase-catalyzed nitrate reduction: Evaluation of its role in nitrite and nitric oxide generation in anoxic tissues. Biochemistry 2003; 42(4): 1150-9.
[http://dx.doi.org/10.1021/bi026385a] [PMID: 12549937]
[64]
Millar TM, Stevens CR, Benjamin N, Eisenthal R, Harrison R, Blake DR. Xanthine oxidoreductase catalyses the reduction of nitrates and nitrite to nitric oxide under hypoxic conditions. FEBS Lett 1998; 427(2): 225-8.
[http://dx.doi.org/10.1016/S0014-5793(98)00430-X] [PMID: 9607316]
[65]
Griendling KK, Sorescu D, Ushio-Fukai M. NAD(P)H oxidase: Role in cardiovascular biology and disease. Circ Res 2000; 86(5): 494-501.
[http://dx.doi.org/10.1161/01.RES.86.5.494] [PMID: 10720409]
[66]
Griendling KK, Minieri CA, Ollerenshaw JD, Alexander RW. Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ Res 1994; 74(6): 1141-8.
[http://dx.doi.org/10.1161/01.RES.74.6.1141] [PMID: 8187280]
[67]
Romero JC, Reckelhoff JF. State-of-the-Art lecture. Role of angiotensin and oxidative stress in essential hypertension. Hypertension 1999; 34((4 Pt 2)): 943-9.
[http://dx.doi.org/10.1161/01.HYP.34.4.943]
[68]
Panus PC, Wright SA, Chumley PH, Radi R, Freeman BA. The contribution of vascular endothelial xanthine dehydrogenase/oxidase to oxygen-mediated cell injury. Arch Biochem Biophys 1992; 294(2): 695-702.
[http://dx.doi.org/10.1016/0003-9861(92)90743-G] [PMID: 1567225]
[69]
Houston M, Estevez A, Chumley P, et al. Binding of xanthine oxidase to vascular endothelium. Kinetic characterization and oxidative impairment of nitric oxide-dependent signaling. J Biol Chem 1999; 274(8): 4985-94.
[http://dx.doi.org/10.1074/jbc.274.8.4985] [PMID: 9988743]
[70]
Parks DA, Granger DN. Xanthine oxidase: Biochemistry, distribution and physiology. Acta Physiol Scand Suppl 1986; 548: 87-99.
[PMID: 3529824]
[71]
Mervaala EM, Cheng ZJ, Tikkanen I, Lapatto R, Nurminen K, Vapaatalo H, et al. Endothelial dysfunction and xanthine oxidoreductase activity in rats with human renin and angiotensinogen genes. Hypertension 2001; 37((2 Pt 2)): 414-8.
[http://dx.doi.org/10.1161/01.HYP.37.2.414]
[72]
Johnson RJ, Bakris GL, Borghi C, et al. Hyperuricemia, acute and chronic kidney disease, hypertension, and cardiovascular disease: Report of a scientific workshop organized by the national kidney foundation. Am J Kidney Dis 2018; 71(6): 851-65.
[http://dx.doi.org/10.1053/j.ajkd.2017.12.009] [PMID: 29496260]
[73]
Bortolotti M, Polito L, Battelli MG, Bolognesi A. Xanthine oxidoreductase: One enzyme for multiple physiological tasks. Redox Biol 2021; 41: 101882.
[http://dx.doi.org/10.1016/j.redox.2021.101882] [PMID: 33578127]
[74]
Khambata RS, Ghosh SM, Ahluwalia A. “Repurposing” of xanthine oxidoreductase as a nitrite reductase: A new paradigm for therapeutic targeting in hypertension. Antioxid Redox Signal 2015; 23(4): 340-53.
[http://dx.doi.org/10.1089/ars.2015.6254] [PMID: 25714611]
[75]
Ganten D, Wagner J, Zeh K, et al. Species specificity of renin kinetics in transgenic rats harboring the human renin and angiotensinogen genes. Proc Natl Acad Sci 1992; 89(16): 7806-10.
[http://dx.doi.org/10.1073/pnas.89.16.7806] [PMID: 1502199]
[76]
Battelli MG, Bortolotti M, Polito L, Bolognesi A. The role of xanthine oxidoreductase and uric acid in metabolic syndrome. Biochim Biophys Acta Mol Basis Dis 2018; 1864(8): 2557-65.
[http://dx.doi.org/10.1016/j.bbadis.2018.05.003] [PMID: 29733945]
[77]
Förstermann U, Xia N, Li H. Roles of vascular oxidative stress and nitric oxide in the pathogenesis of atherosclerosis. Circ Res 2017; 120(4): 713-35.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.309326] [PMID: 28209797]
[78]
Kimura Y, Yanagida T, Onda A, Tsukui D, Hosoyamada M, Kono H. Soluble uric acid promotes atherosclerosis via AMPK (AMP-Activated Protein Kinase)-mediated inflammation. Arterioscler Thromb Vasc Biol 2020; 40(3): 570-82.
[http://dx.doi.org/10.1161/ATVBAHA.119.313224] [PMID: 31996020]
[79]
Washio K, Kusunoki Y, Tsunoda T, et al. Xanthine oxidoreductase activity correlates with vascular endothelial dysfunction in patients with type 1 diabetes. Acta Diabetol 2020; 57(1): 31-9.
[http://dx.doi.org/10.1007/s00592-019-01362-1] [PMID: 31093763]
[80]
Pardue S, Kolluru GK, Shen X, et al. Hydrogen sulfide stimulates xanthine oxidoreductase conversion to nitrite reductase and formation of NO. Redox Biol 2020; 34: 101447.
[http://dx.doi.org/10.1016/j.redox.2020.101447] [PMID: 32035920]
[81]
Shirakura T, Nomura J, Matsui C, Kobayashi T, Tamura M, Masuzaki H. Febuxostat, a novel xanthine oxidoreductase inhibitor, improves hypertension and endothelial dysfunction in spontaneously hypertensive rats. Naunyn Schmiedebergs Arch Pharmacol 2016; 389(8): 831-8.
[http://dx.doi.org/10.1007/s00210-016-1239-1] [PMID: 27198514]
[82]
Kusano T, Ehirchiou D, Matsumura T, et al. Targeted knock-in mice expressing the oxidase-fixed form of xanthine oxidoreductase favor tumor growth. Nat Commun 2019; 10(1): 4904.
[http://dx.doi.org/10.1038/s41467-019-12565-z] [PMID: 31659168]
[83]
Schuchardt M, Herrmann J, Tolle M, der Giet M. Xanthine oxidase and its role as target in cardiovascular disease: Cardiovascular protection by enzyme inhibition? Curr Pharm Des 2017; 23(23): 3391-404.
[http://dx.doi.org/10.2174/1381612823666170417130115] [PMID: 28413972]
[84]
Nomura J, Busso N, Ives A, et al. Xanthine oxidase inhibition by febuxostat attenuates experimental atherosclerosis in mice. Sci Rep 2014; 4(1): 4554.
[http://dx.doi.org/10.1038/srep04554] [PMID: 24686534]
[85]
Sakuma M, Toyoda S, Arikawa T, et al. The effects of xanthine oxidase inhibitor in patients with chronic heart failure complicated with hyperuricemia: A prospective randomized controlled clinical trial of topiroxostat vs allopurinol-study protocol. Clin Exp Nephrol 2018; 22(6): 1379-86.
[http://dx.doi.org/10.1007/s10157-018-1599-6] [PMID: 29916098]
[86]
Dogan A, Yarlioglues M, Kaya MG, et al. Effect of long-term and high-dose allopurinol therapy on endothelial function in normotensive diabetic patients. Blood Press 2011; 20(3): 182-7.
[http://dx.doi.org/10.3109/08037051.2010.538977] [PMID: 21133824]
[87]
Friedl HP, Smith DJ, Till GO, Thomson PD, Louis DS, Ward PA. Ischemia-reperfusion in humans. Appearance of xanthine oxidase activity. Am J Pathol 1990; 136(3): 491-5.
[PMID: 2316621]
[88]
Kang SM, Lim S, Song H, et al. Allopurinol modulates reactive oxygen species generation and Ca2+ overload in ischemia-reperfused heart and hypoxia-reoxygenated cardiomyocytes. Eur J Pharmacol 2006; 535(1-3): 212-9.
[http://dx.doi.org/10.1016/j.ejphar.2006.01.013] [PMID: 16516885]
[89]
Kong L, Luo C, Li X, Zhou Y, He H. The anti-inflammatory effect of kaempferol on early atherosclerosis in high cholesterol fed rabbits. Lipids Health Dis 2013; 12(1): 115.
[http://dx.doi.org/10.1186/1476-511X-12-115] [PMID: 23895132]
[90]
Patel RV, Mistry BM, Shinde SK, Syed R, Singh V, Shin HS. Therapeutic potential of quercetin as a cardiovascular agent. Eur J Med Chem 2018; 155: 889-904.
[http://dx.doi.org/10.1016/j.ejmech.2018.06.053] [PMID: 29966915]
[91]
Kober T, König I, Weber M, Kojda G. Diethyldithiocarbamate inhibits the catalytic activity of xanthine oxidase. FEBS Lett 2003; 551(1-3): 99-103.
[http://dx.doi.org/10.1016/S0014-5793(03)00876-7] [PMID: 12965211]
[92]
Mackenzie IS, Ford I, Walker A, et al. Multicentre, prospective, randomised, open-label, blinded end point trial of the efficacy of allopurinol therapy in improving cardiovascular outcomes in patients with ischaemic heart disease: Protocol of the ALL-HEART study. BMJ Open 2016; 6(9): e013774.
[http://dx.doi.org/10.1136/bmjopen-2016-013774] [PMID: 27609859]
[93]
Higgins P, Dawson J, Lees KR, McArthur K, Quinn TJ, Walters MR. Xanthine oxidase inhibition for the treatment of cardiovascular disease: A systematic review and meta-analysis. Cardiovasc Ther 2012; 30(4): 217-26.
[http://dx.doi.org/10.1111/j.1755-5922.2011.00277.x] [PMID: 22099531]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy