Abstract
Background: Myocardial fibrosis significantly contributes to the pathogenesis and progression of heart failure.
Objective: We probe into the impact of marein, a key bioactive compound in functional food Coreopsis tinctoria, on isoproterenol-stimulated myocardial fibrotic mice and transforming growth factor β1 (TGF-β1)-stimulated cardiac fibroblasts (CFs).
Methods: Isoproterenol was administered to the experimental mice via subcutaneous injection, and simultaneous administration of marein (25-100 mg/kg) was performed via oral gavage. CFs were stimulated with TGF- β1 to trigger differentiation and collagen synthesis, followed by treatment with marein at concentrations of 5-20 μM.
Results: Treatment with marein in mice and CFs resulted in a significant reduction in the protein expression levels of α-smooth muscle actin, collagen type I, and collagen type III. Additionally, marein treatment decreased the protein expression levels of TGF-β1, hypoxia-inducible factor-1α (HIF-1α), p-Smad2/3, and Smad2/3. Notably, molecular docking analysis revealed that marein directly targets HIF-1α.
Conclusion: Marein might exert a protective function in isoproterenol-stimulated myocardial fibrotic mice and TGF-β1-stimulated CFs, which might result from the reduction of TGF-β1 induced HIF-1α expression, then inhibiting p-Smad2/3 and Smad2/3 expressions.
Keywords: Myocardial fibrosis, marein, cardiac fibroblasts, TGF-β1, HIF-1α, Smad2/3.
[http://dx.doi.org/10.3389/fphar.2023.1070973] [PMID: 37056987]
[http://dx.doi.org/10.1016/j.phrs.2023.106815] [PMID: 37290541]
[http://dx.doi.org/10.1016/j.jelectrocard.2022.10.012] [PMID: 36370545]
[http://dx.doi.org/10.3389/fcvm.2022.926378] [PMID: 36247487]
[http://dx.doi.org/10.2967/jnumed.122.264867] [PMID: 37918842]
[http://dx.doi.org/10.3390/ijms23052617] [PMID: 35269759]
[http://dx.doi.org/10.1038/nrneph.2016.48] [PMID: 27108839]
[http://dx.doi.org/10.1016/j.semcdb.2019.12.010] [PMID: 31879265]
[http://dx.doi.org/10.21542/gcsp.2023.9] [PMID: 37351095]
[http://dx.doi.org/10.1096/fj.201802650RR] [PMID: 30917010]
[http://dx.doi.org/10.18632/oncotarget.23225] [PMID: 29423039]
[http://dx.doi.org/10.1016/j.kint.2016.05.026] [PMID: 27503806]
[http://dx.doi.org/10.4014/jmb.2109.09033] [PMID: 35001005]
[http://dx.doi.org/10.1016/j.biopha.2020.110684] [PMID: 33152903]
[http://dx.doi.org/10.1186/s12906-018-2410-7] [PMID: 30630477]
[http://dx.doi.org/10.1016/j.intimp.2019.106126] [PMID: 31931363]
[http://dx.doi.org/10.1002/ddr.21770] [PMID: 33314222]
[http://dx.doi.org/10.1021/acs.jcim.1c00203] [PMID: 34278794]
[http://dx.doi.org/10.1056/NEJMoa1609758] [PMID: 29091558]
[http://dx.doi.org/10.7759/cureus.25745] [PMID: 35812579]
[http://dx.doi.org/10.1016/j.jacc.2018.02.021] [PMID: 29650126]
[http://dx.doi.org/10.1292/jvms.18-0599] [PMID: 30464077]
[http://dx.doi.org/10.1161/JAHA.118.010013] [PMID: 30371263]
[http://dx.doi.org/10.1093/jpp/rgad111] [PMID: 37992247]
[http://dx.doi.org/10.1016/j.lfs.2020.117859] [PMID: 32474020]
[http://dx.doi.org/10.18632/aging.202343] [PMID: 33295886]
[http://dx.doi.org/10.1016/j.stem.2021.10.009] [PMID: 34762860]
[http://dx.doi.org/10.3389/fphar.2019.01349] [PMID: 31803053]