Essential Fatty Acids along the Women’s Life Cycle and Promotion of a Well-balanced Metabolism | Bentham Science
Generic placeholder image

Current Women`s Health Reviews

Editor-in-Chief

ISSN (Print): 1573-4048
ISSN (Online): 1875-6581

Review Article

Essential Fatty Acids along the Women’s Life Cycle and Promotion of a Well-balanced Metabolism

Author(s): Georgina N. Marchiori, Aldo R. Eynard and Elio A. Soria*

Volume 20, Issue 6, 2024

Published on: 11 October, 2023

Article ID: e111023222094 Pages: 22

DOI: 10.2174/0115734048247312230929092327

Price: $65

Open Access Journals Promotions 2
Abstract

Linoleic acid (ω-6 LA) and α-linolenic acid (ω-3 ALA) are essential fatty acids (EFA) for human beings. They must be consumed through diet and then extensively metabolized, a process that plays a fundamental role in health and eventually in disease prevention. Given the numerous changes depending on age and sex, EFA metabolic adaptations require further investigations along the women’s life cycle, from onset to decline of the reproductive age. Thus, this review explains women’s life cycle stages and their involvement in diet intake, digestion and absorption, the role of microbiota, metabolism, bioavailability, and EFA fate and major metabolites. This knowledge is crucial to promoting lipid homeostasis according to female physiology through well- directed health strategies. Concerning this, the promotion of breastfeeding, nutrition, and physical activity is cardinal to counteract ALA deficiency, LA/ALA imbalance, and the release of unhealthy derivatives. These perturbations arise after menopause that compromise both lipogenic and lipolytic pathways. The close interplay of diet, age, female organism, and microbiota also plays a central role in regulating lipid metabolism. Consequently, future studies are encouraged to propose efficient interventions for each stage of women's cycle. In this sense, plant-derived foods and products are promising to be included in women’s nutrition to improve EFA metabolism.

Keywords: Aging, lipids, nutrition, psychoneuroimmunoendocrinology, polyunsaturated fatty acids, women’s health.

Graphical Abstract
[1]
Motta-Mena, N.V.; Puts, D.A. Endocrinology of human female sexuality, mating, and reproductive behavior. Horm. Behav., 2017, 91, 19-35.
[http://dx.doi.org/10.1016/j.yhbeh.2016.11.012] [PMID: 27866819]
[2]
Beluska-Turkan, K.; Korczak, R.; Hartell, B.; Moskal, K.; Maukonen, J.; Alexander, D.E.; Salem, N.; Harkness, L.; Ayad, W.; Szaro, J.; Zhang, K.; Siriwardhana, N. Nutritional gaps and supplementation in the first 1000 days. Nutrients, 2019, 11(12), 2891.
[http://dx.doi.org/10.3390/nu11122891] [PMID: 31783636]
[3]
Domínguez-López, I.; Yago-Aragón, M.; Salas-Huetos, A.; Tresserra-Rimbau, A.; Hurtado-Barroso, S. Effects of dietary phytoestrogens on hormones throughout a human lifespan: A review. Nutrients, 2020, 12(8), 2456.
[http://dx.doi.org/10.3390/nu12082456] [PMID: 32824177]
[4]
Das, U.N. Bioactive lipids in age-related disorders. Adv. Exp. Med. Biol., 2020, 1260, 33-83.
[http://dx.doi.org/10.1007/978-3-030-42667-5_3] [PMID: 32304030]
[5]
Das, U.N. Essential fatty acids and their metabolites in the pathobiology of inflammation and its resolution. Biomolecules, 2021, 11(12), 1873.
[http://dx.doi.org/10.3390/biom11121873] [PMID: 34944517]
[6]
Das, U.N. “Cell Membrane Theory of Senescence” and the role of bioactive lipids in aging, and aging associated diseases and their therapeutic implications. Biomolecules, 2021, 11(2), 241.
[http://dx.doi.org/10.3390/biom11020241] [PMID: 33567774]
[7]
Gusnedi, G.; Fahmida, U.; Witjaksono, F.; Nurwidya, F.; Mansyur, M.; Djuwita, R.; Dwiriani, C.M.; Abdullah, M. Effectiveness of optimized food-based recommendation promotion to improve nutritional status and lipid profiles among Minangkabau women with dyslipidemia: A cluster-randomized trial. BMC Public Health, 2022, 22(1), 21.
[http://dx.doi.org/10.1186/s12889-021-12462-5] [PMID: 34991541]
[8]
Lepping, R.J.; Honea, R.A.; Martin, L.E.; Liao, K.; Choi, I.Y.; Lee, P.; Papa, V.B.; Brooks, W.M.; Shaddy, D.J.; Carlson, S.E.; Colombo, J.; Gustafson, K.M. Long-chain polyunsaturated fatty acid supplementation in the first year of life affects brain function, structure, and metabolism at age nine years. Dev. Psychobiol., 2019, 61(1), 5-16.
[http://dx.doi.org/10.1002/dev.21780] [PMID: 30311214]
[9]
Thai, J.D.; Gregory, K.E. Bioactive factors in human breast milk attenuate intestinal inflammation during early life. Nutrients, 2020, 12(2), 581.
[http://dx.doi.org/10.3390/nu12020581] [PMID: 32102231]
[10]
Cerdó, T.; Diéguez, E.; Campoy, C. Infant growth, neurodevelopment and gut microbiota during infancy. Curr. Opin. Clin. Nutr. Metab. Care, 2019, 22(6), 434-441.
[http://dx.doi.org/10.1097/MCO.0000000000000606] [PMID: 31567222]
[11]
Flannagan, K.; Gahagan, S.; Das, A.; Burrows, R.; Lozoff, B.; Villamor, E. Serum polyunsaturated fatty acids in infancy are associated with body composition in adolescence. Pediatr. Obes., 2020, 15(11), e12656.
[http://dx.doi.org/10.1111/ijpo.12656] [PMID: 32426929]
[12]
Kjellberg, E.; Roswall, J.; Bergman, S.; Strandvik, B.; Dahlgren, J. Serum n-6 and n-9 fatty acids correlate with serum igf-1 and growth up to 4 months of age in healthy infants. J. Pediatr. Gastroenterol. Nutr., 2018, 66(1), 141-146.
[http://dx.doi.org/10.1097/MPG.0000000000001691] [PMID: 28753183]
[13]
Campoy, C.; Chisaguano, T.A.M.; de la Garza, P.A.; Sáenz de Pipaón, M.; Verduci, E.; Koletzko, B.; González, C.I.; Larqué, E.; Valenzuela, R.; Moreno, V.J.M.; Gil, Á. Current controversy about the critical role of long-chain polyunsaturated fatty acids, arachidonic (ARA) and docosahexaenoic (DHA), in infants. Nutr. Hosp., 2021, 38(5), 1101-1112.
[http://dx.doi.org/10.20960/nh.03707] [PMID: 34465121]
[14]
Alotaibi, M.F. Physiology of puberty in boys and girls and pathological disorders affecting its onset. J. Adolesc., 2019, 71(1), 63-71.
[http://dx.doi.org/10.1016/j.adolescence.2018.12.007] [PMID: 30639665]
[15]
Spaziani, M.; Tarantino, C.; Tahani, N.; Gianfrilli, D.; Sbardella, E.; Lenzi, A.; Radicioni, A.F. Hypothalamo-Pituitary axis and puberty. Mol. Cell. Endocrinol., 2021, 520, 111094.
[http://dx.doi.org/10.1016/j.mce.2020.111094] [PMID: 33271219]
[16]
Egan, O.K.; Inglis, M.A.; Anderson, G.M. Leptin signaling in AgRP neurons modulates puberty onset and adult fertility in mice. J. Neurosci., 2017, 37(14), 3875-3886.
[http://dx.doi.org/10.1523/JNEUROSCI.3138-16.2017] [PMID: 28275162]
[17]
Benyi, E.; Sävendahl, L. The physiology of childhood growth: Hormonal regulation. Horm. Res. Paediatr., 2017, 88(1), 6-14.
[http://dx.doi.org/10.1159/000471876] [PMID: 28437784]
[18]
Stephenson, J.; Heslehurst, N.; Hall, J.; Schoenaker, D.A.J.M.; Hutchinson, J.; Cade, J.E.; Poston, L.; Barrett, G.; Crozier, S.R.; Barker, M.; Kumaran, K.; Yajnik, C.S.; Baird, J.; Mishra, G.D. Before the beginning: Nutrition and lifestyle in the preconception period and its importance for future health. Lancet, 2018, 391(10132), 1830-1841.
[http://dx.doi.org/10.1016/S0140-6736(18)30311-8] [PMID: 29673873]
[19]
Xu, X.; Li, X.; Liang, Y.; Ou, Y.; Huang, J.; Xiong, J.; Duan, L.; Wang, D. Estrogen modulates cartilage and subchondral bone remodeling in an ovariectomized rat model of postmenopausal osteoarthritis. Med. Sci. Monit., 2019, 25, 3146-3153.
[http://dx.doi.org/10.12659/MSM.916254] [PMID: 31031401]
[20]
Harding, A.T.; Goff, M.A.; Froggatt, H.M.; Lim, J.K.; Heaton, N.S. GPER1 is required to protect fetal health from maternal inflammation. SCIENCE, 2021, 371(6526), 271-276.
[http://dx.doi.org/10.1126/science.aba9001]
[21]
Morssinkhof, M.; van Wylick, D.W.; Priester-Vink, S.; van der Werf, Y.D.; den Heijer, M.; van den Heuvel, O.A.; Broekman, B. Associations between sex hormones, sleep problems and depression: A systematic review. Neurosci. Biobehav. Rev., 2020, 118, 669-680.
[http://dx.doi.org/10.1016/j.neubiorev.2020.08.006 ]
[22]
Jarman, M.; Mathe, N.; Ramazani, F.; Pakseresht, M.; Robson, P.; Johnson, S.; Bell, R. APrON and ENRICH study teams. Dietary patterns prior to pregnancy and associations with pregnancy complications. Nutrients, 2018, 10(7), 914.
[http://dx.doi.org/10.3390/nu10070914] [PMID: 30018227]
[23]
Carmichael, M.A.; Thomson, R.L.; Moran, L.J.; Wycherley, T.P. The impact of menstrual cycle phase on athletes’ performance: A narrative review. Int. J. Environ. Res. Public Health, 2021, 18(4), 1667.
[http://dx.doi.org/10.3390/ijerph18041667] [PMID: 33572406]
[24]
Benton, M.J.; Hutchins, A.M.; Dawes, J.J. Effect of menstrual cycle on resting metabolism: A systematic review and meta-analysis. PLoS One, 2020, 15(7), e0236025.
[http://dx.doi.org/10.1371/journal.pone.0236025] [PMID: 32658929]
[25]
Schmalenberger, K.M.; Tauseef, H.A.; Barone, J.C.; Owens, S.A.; Lieberman, L.; Jarczok, M.N.; Girdler, S.S.; Kiesner, J.; Ditzen, B.; Eisenlohr-Moul, T.A. How to study the menstrual cycle: Practical tools and recommendations. Psychoneuroendocrinology, 2021, 123, 104895.
[http://dx.doi.org/10.1016/j.psyneuen.2020.104895] [PMID: 33113391]
[26]
Massimiani, M.; Lacconi, V.; La Civita, F.; Ticconi, C.; Rago, R.; Campagnolo, L. Molecular signaling regulating endometrium–blastocyst crosstalk. Int. J. Mol. Sci., 2019, 21(1), 23.
[http://dx.doi.org/10.3390/ijms21010023] [PMID: 31861484]
[27]
Sherer, M.L.; Posillico, C.K.; Schwarz, J.M. The psychoneuroimmunology of pregnancy. Front. Neuroendocrinol., 2018, 51, 25-35.
[http://dx.doi.org/10.1016/j.yfrne.2017.10.006] [PMID: 29110974]
[28]
Trujillo-Güiza, M.L.; Señarís, R. Leptin resistance during pregnancy is also exerted at the periphery. Biol. Reprod., 2018, 98(5), 654-663.
[http://dx.doi.org/10.1093/biolre/ioy024] [PMID: 29385412]
[29]
Teixeira, P.D.S.; Couto, G.C.; Furigo, I.C.; List, E.O.; Kopchick, J.J.; Donato, J., Jr Central growth hormone action regulates metabolism during pregnancy. Am. J. Physiol. Endocrinol. Metab., 2019, 317(5), E925-E940.
[http://dx.doi.org/10.1152/ajpendo.00229.2019] [PMID: 31479305]
[30]
Johnson, M.L.; Saffrey, M.J.; Taylor, V.J. Gastrointestinal capacity, gut hormones and appetite change during rat pregnancy and lactation. Reproduction, 2019, 157(5), 431-443.
[http://dx.doi.org/10.1530/REP-18-0414] [PMID: 30790767]
[31]
Champion, M.L.; Harper, L.M. gestational weight gain: Update on outcomes and interventions. Curr. Diab. Rep., 2020, 20(3), 11.
[http://dx.doi.org/10.1007/s11892-020-1296-1] [PMID: 32108283]
[32]
Aballay, L.R.; Eynard, A.R.; Díaz, M.P.; Navarro, A.; Muñoz, S.E. Overweight and obesity: A review of their relationship to metabolic syndrome, cardiovascular disease, and cancer in South America. Nutr. Rev., 2013, 71(3), 168-179.
[http://dx.doi.org/10.1111/j.1753-4887.2012.00533.x] [PMID: 23452284]
[33]
Santoro, N.; Roeca, C.; Peters, B.A.; Neal-Perry, G. The menopause transition: Signs, symptoms, and management options. J. Clin. Endocrinol. Metab., 2021, 106(1), 1-15.
[http://dx.doi.org/10.1210/clinem/dgaa764] [PMID: 33095879]
[34]
McNeil, M.A.; Merriam, S.B. Menopause. Ann. Intern. Med., 2021, 174(7), ITC97-ITC112.
[http://dx.doi.org/10.7326/AITC202107200] [PMID: 34251902]
[35]
Giannini, A.; Caretto, M.; Genazzani, A.R.; Simoncini, T. Neuroendocrine changes during menopausal transition. Endocrines, 2021, 2(4), 405-416.
[http://dx.doi.org/10.3390/endocrines2040036]
[36]
Dmitruk, A.; Czeczelewski, J.; Czeczelewska, E.; Golach, J.; Parnicka, U. Body composition and fatty tissue distribution in women with various menstrual status. Rocz. Panstw. Zakl. Hig., 2018, 69(1), 95-101.
[PMID: 29519121]
[37]
Gavin, K.M.; Sullivan, T.M.; Kohrt, W.M.; Majka, S.M.; Klemm, D.J. Ovarian hormones regulate the production of adipocytes from bone marrow-derived cells. Front. Endocrinol., 2018, 9, 276.
[http://dx.doi.org/10.3389/fendo.2018.00276] [PMID: 29892267]
[38]
Abildgaard, J.; Ploug, T.; Al-Saoudi, E.; Wagner, T.; Thomsen, C.; Ewertsen, C.; Bzorek, M.; Pedersen, B.K.; Pedersen, A.T.; Lindegaard, B. Changes in abdominal subcutaneous adipose tissue phenotype following menopause is associated with increased visceral fat mass. Sci. Rep., 2021, 11(1), 14750.
[http://dx.doi.org/10.1038/s41598-021-94189-2] [PMID: 34285301]
[39]
Lee, H.; Kim, Y.I.; Nirmala, F.S.; Kim, J.S.; Seo, H.D.; Ha, T.Y.; Jang, Y.J.; Jung, C.H.; Ahn, J. MiR-141-3p promotes mitochondrial dysfunction in ovariectomy-induced sarcopenia via targeting Fkbp5 and Fibin. Aging, 2021, 13(4), 4881-4894.
[http://dx.doi.org/10.18632/aging.202617] [PMID: 33534778]
[40]
Tannir, H.; Kreidieh, D.; Itani, L.; El Masri, D.; El Ghoch, M. Reduction of resting energy expenditure and sarcopenic obesity in adults with overweight and obesity: A brief report. Curr. Diabetes Rev., 2020, 16(4), 376-380.
[http://dx.doi.org/10.2174/1573399815666191030092138] [PMID: 31663844]
[41]
Pu, D.; Tan, R.; Yu, Q.; Wu, J. Metabolic syndrome in menopause and associated factors: A meta-analysis. Climacteric, 2017, 20(6), 583-591.
[http://dx.doi.org/10.1080/13697137.2017.1386649] [PMID: 29064321]
[42]
Saini, R.K.; Keum, Y.S. Omega-3 and omega-6 polyunsaturated fatty acids: Dietary sources, metabolism, and significance — A review. Life Sci., 2018, 203, 255-267.
[http://dx.doi.org/10.1016/j.lfs.2018.04.049] [PMID: 29715470]
[43]
Kim, D.E.; Shang, X.; Assefa, A.D.; Keum, Y.S.; Saini, R.K. Metabolite profiling of green, green/red, and red lettuce cultivars: Variation in health beneficial compounds and antioxidant potential. Food Res. Int., 2018, 105, 361-370.
[http://dx.doi.org/10.1016/j.foodres.2017.11.028] [PMID: 29433225]
[44]
Eynard, A.R. Potential of essential fatty acids as natural therapeutic products for human tumors. Nutrition, 2003, 19(4), 386-388.
[http://dx.doi.org/10.1016/S0899-9007(02)00956-5] [PMID: 12679177]
[45]
Kaliannan, K.; Li, X.Y.; Wang, B.; Pan, Q.; Chen, C.Y.; Hao, L.; Xie, S.; Kang, J.X. Multi-omic analysis in transgenic mice implicates omega-6/omega-3 fatty acid imbalance as a risk factor for chronic disease. Commun. Biol., 2019, 2(1), 276.
[http://dx.doi.org/10.1038/s42003-019-0521-4] [PMID: 31372515]
[46]
Navarro, A.; Muñoz, S.E.; Lantieri, M.J.; Fabro, E.A.; Eynard, A.R. Composición de ácidos grasos saturados e insaturados en alimentos de consumo frecuente en Argentina. Arch. Latinoam. Nutr., 1997, 47(3), 276-281.
[PMID: 9673686]
[47]
Babiszewska, M. Effects of energy and essential fatty acids content in breast milk on infant’s head dimensions. Am. J. Hum. Biol., 2020, 32(6), e23418.
[http://dx.doi.org/10.1002/ajhb.23418] [PMID: 32307819]
[48]
Codini, M.; Tringaniello, C.; Cossignani, L.; Boccuto, A.; Mirarchi, A.; Cerquiglini, L.; Troiani, S.; Verducci, G.; Patria, F.F.; Conte, C.; Cataldi, S.; Ceccarini, M.R.; Paroni, R.; Dei Cas, M.; Beccari, T.; Curcio, F.; Albi, E. Relationship between fatty acids composition/antioxidant potential of breast milk and maternal diet: Comparison with infant formulas. Molecules, 2020, 25(12), 2910.
[http://dx.doi.org/10.3390/molecules25122910] [PMID: 32599866]
[49]
Floris, L.M.; Stahl, B.; Abrahamse-Berkeveld, M.; Teller, I.C. Human milk fatty acid profile across lactational stages after term and preterm delivery: A pooled data analysis. Prostaglandins Leukot. Essent. Fatty Acids, 2020, 156, 102023.
[http://dx.doi.org/10.1016/j.plefa.2019.102023] [PMID: 31699594]
[50]
Giuffrida, F.; Fleith, M.; Goyer, A.; Samuel, T.M.; Elmelegy-Masserey, I.; Fontannaz, P.; Cruz-Hernandez, C.; Thakkar, S.K.; Monnard, C.; De Castro, C.A.; Lavalle, L.; Rakza, T.; Agosti, M.; Al-Jashi, I.; Pereira, A.B.; Costeira, M.J.; Marchini, G.; Vanpee, M.; Stiris, T.; Stoicescu, S.; Silva, M.G.; Picaud, J.C.; Martinez-Costa, C.; Domellöf, M.; Billeaud, C. Human milk fatty acid composition and its association with maternal blood and adipose tissue fatty acid content in a cohort of women from Europe. Eur. J. Nutr., 2022, 61(4), 2167-2182.
[http://dx.doi.org/10.1007/s00394-021-02788-6] [PMID: 35072787]
[51]
Ye, L.; Zhang, Q.; Xin, F.; Cao, B.; Qian, L.; Dong, Y. Neonatal milk fat globule membrane supplementation during breastfeeding ameliorates the deleterious effects of maternal high-fat diet on metabolism and modulates gut microbiota in adult mice offspring in a sex-specific way. Front. Cell. Infect. Microbiol., 2021, 11, 621957.
[http://dx.doi.org/10.3389/fcimb.2021.621957] [PMID: 33816333]
[52]
Collins, J.M.; Caputi, V.; Manurung, S.; Gross, G.; Fitzgerald, P.; Golubeva, A.V.; Popov, J.; Deady, C.; Dinan, T.G.; Cryan, J.F.; O’Mahony, S.M. Supplementation with milk fat globule membrane from early life reduces maternal separation-induced visceral pain independent of enteric nervous system or intestinal permeability changes in the rat. Neuropharmacology, 2022, 210, 109026.
[http://dx.doi.org/10.1016/j.neuropharm.2022.109026] [PMID: 35283136]
[53]
Eynard, A.R.; Monis, B. Concanavalin A sites in urothelium and milk fat globules of essential fatty acid (EFA) deficient rats. J. Submicrosc. Cytol., 1983, 15(2), 375-382.
[PMID: 6854686]
[54]
Kim, Y.; Kim, H.; Kwon, O. Dietary intake of n -3 and n -6 polyunsaturated fatty acids in Korean toddlers 12–24 months of age with comparison to the dietary recommendations. Nutr. Res. Pract., 2019, 13(4), 344-351.
[http://dx.doi.org/10.4162/nrp.2019.13.4.344] [PMID: 31388411]
[55]
Keim, S.A.; Branum, A.M. Dietary intake of polyunsaturated fatty acids and fish among US children 12-60 months of age. Matern. Child Nutr., 2015, 11(4), 987-998.
[http://dx.doi.org/10.1111/mcn.12077] [PMID: 24034437]
[56]
Derbyshire, E. Oily fish and omega-3s across the life stages: A focus on intakes and future directions. Front. Nutr., 2019, 6, 165.
[http://dx.doi.org/10.3389/fnut.2019.00165] [PMID: 31781570]
[57]
Leikin-Frenkel, A.; Liraz-Zaltsman, S.; Hollander, K.S.; Atrakchi, D.; Ravid, O.; Rand, D.; Kandel-Kfir, M.; Israelov, H.; Cohen, H.; Kamari, Y.; Shaish, A.; Harats, D.; Schnaider-Beeri, M.; Cooper, I. Dietary alpha linolenic acid in pregnant mice and during weaning increases brain docosahexaenoic acid and improves recognition memory in the offspring. J. Nutr. Biochem., 2021, 91, 108597.
[http://dx.doi.org/10.1016/j.jnutbio.2021.108597] [PMID: 33545323]
[58]
O’Sullivan, T.A.; Ambrosini, G.; Beilin, L.J.; Mori, T.A.; Oddy, W.H. Dietary intake and food sources of fatty acids in Australian adolescents. Nutrition, 2011, 27(2), 153-159.
[http://dx.doi.org/10.1016/j.nut.2009.11.019] [PMID: 20338727]
[59]
Sioen, I.A.; Pynaert, H.; matthys, C.; De Backer, G.; Van Camp, J.; De Henauw, S. Dietary intakes and food sources of fatty acids for Belgian women, focused on n-6 and n-3 polyunsaturated fatty acids. Lipids, 2006, 41(5), 415-422.
[http://dx.doi.org/10.1007/s11745-006-5115-5] [PMID: 16933786]
[60]
Aparicio, E.; Martín-Grau, C.; Hernández-Martinez, C.; Voltas, N.; Canals, J.; Arija, V. Changes in fatty acid levels (saturated, monounsaturated and polyunsaturated) during pregnancy. BMC Pregnancy Childbirth, 2021, 21(1), 778.
[http://dx.doi.org/10.1186/s12884-021-04251-0] [PMID: 34789176]
[61]
Leikin-Frenkel, A.; Mohr-Sasson, A.; Anteby, M.; Kandel-Kfir, M.; Harari, A.; Rahav, R.; Kamari, Y.; Shaish, A.; Harats, D.; Cohen, H.; Hendler, I. Blood fatty acid analysis reveals similar n-3 fatty acid composition in non-pregnant and pregnant women and their neonates in an Israeli pilot study. Prostaglandins Leukot. Essent. Fatty Acids, 2021, 173, 102339.
[http://dx.doi.org/10.1016/j.plefa.2021.102339] [PMID: 34487973]
[62]
Phang, M.; Dissanayake, H.U.; McMullan, R.L.; Hyett, J.; Gordon, A.; Garg, M.L.; Skilton, M.R. Increased α-linolenic acid intake during pregnancy is associated with higher offspring birth weight. Curr. Dev. Nutr., 2019, 3(2), nzy081.
[http://dx.doi.org/10.1093/cdn/nzy081] [PMID: 30820488]
[63]
Vasconcelos, L.G.; Gomes, C.B.; Malta, M.B.; Dichi, I.; Benício, M.H.D.A.; Carvalhaes, M.A.B.L. Insufficient intake of alpha-linolenic fatty acid (18:3n-3) during pregnancy and associated factors. Rev. Nutr., 2017, 30(4), 443-453.
[http://dx.doi.org/10.1590/1678-98652017000400004]
[64]
Parra-Cabrera, S.; Stein, A.D.; Wang, M.; Martorell, R.; Rivera, J.; Ramakrishnan, U. Dietary intakes of polyunsaturated fatty acids among pregnant Mexican women. Matern. Child Nutr., 2011, 7(2), 140-147.
[http://dx.doi.org/10.1111/j.1740-8709.2010.00254.x] [PMID: 21410881]
[65]
Shen, D.; Tian, L.; Shen, T.; Sun, H.; Liu, P. Alpha-lipoic acid protects human aortic endothelial cells against H2O2-induced injury and inhibits atherosclerosis in ovariectomized low density lipoprotein receptor knock-out mice. Cell. Physiol. Biochem., 2018, 47(6), 2261-2277.
[http://dx.doi.org/10.1159/000491537] [PMID: 29975924]
[66]
Wu, J.; Cho, E.; Giovannucci, E.L.; Rosner, B.A.; Sastry, S.M.; Schaumberg, D.A.; Willett, W.C. Dietary intake of α-linolenic acid and risk of age-related macular degeneration. Am. J. Clin. Nutr., 2017, 105(6), 1483-1492.
[http://dx.doi.org/10.3945/ajcn.116.143453] [PMID: 28468892]
[67]
Karam, J.; Bibiloni, M.M.; Pons, A.; Tur, J.A. Total fat and fatty acid intakes and food sources in Mediterranean older adults requires education to improve health. Nutr. Res., 2020, 73, 67-74.
[http://dx.doi.org/10.1016/j.nutres.2019.11.003] [PMID: 31865217]
[68]
Yngve, A.; Neuman, N.; Haapala, I.; Scander, H. The project collection food, nutrition and health, with a focus on eating together. Int. J. Environ. Res. Public Health, 2021, 18(4), 1572.
[http://dx.doi.org/10.3390/ijerph18041572] [PMID: 33562352]
[69]
Patriota, P.; Marques-Vidal, P. Retirement is associated with a decrease in dietary quality. Clin. Nutr. ESPEN, 2021, 45, 206-212.
[http://dx.doi.org/10.1016/j.clnesp.2021.08.026] [PMID: 34620319]
[70]
Whitelock, E.; Ensaff, H. On your own: older adults’ food choice and dietary habits. Nutrients, 2018, 10(4), 413.
[http://dx.doi.org/10.3390/nu10040413] [PMID: 29584644]
[71]
Dahir, N.S.; Calder, A.N.; McKinley, B.J.; Liu, Y.; Gilbertson, T.A. Sex differences in fat taste responsiveness are modulated by estradiol. Am. J. Physiol. Endocrinol. Metab., 2021, 320(3), E566-E580.
[http://dx.doi.org/10.1152/ajpendo.00331.2020] [PMID: 33427045]
[72]
Ko, C.W.; Qu, J.; Black, D.D.; Tso, P. Regulation of intestinal lipid metabolism: Current concepts and relevance to disease. Nat. Rev. Gastroenterol. Hepatol., 2020, 17(3), 169-183.
[http://dx.doi.org/10.1038/s41575-019-0250-7] [PMID: 32015520]
[73]
Sandesara, P.B.; Virani, S.S.; Fazio, S.; Shapiro, M.D. The forgotten lipids: Triglycerides, remnant cholesterol, and atherosclerotic cardiovascular disease risk. Endocr. Rev., 2019, 40(2), 537-557.
[http://dx.doi.org/10.1210/er.2018-00184] [PMID: 30312399]
[74]
Yang, Q.; Wang, S.; Ji, Y.; Chen, H.; Zhang, H.; Chen, W.; Gu, Z.; Chen, Y.Q. Dietary intake of n-3 PUFAs modifies the absorption, distribution and bioavailability of fatty acids in the mouse gastrointestinal tract. Lipids Health Dis., 2017, 16(1), 10.
[http://dx.doi.org/10.1186/s12944-016-0399-9] [PMID: 28095863]
[75]
Ye, Z.; Cao, C.; Liu, Y.; Cao, P.; Li, Q. Digestion fates of different edible oils vary with their composition specificities and interactions with bile salts. Food Res. Int., 2018, 111, 281-290.
[http://dx.doi.org/10.1016/j.foodres.2018.05.040] [PMID: 30007687]
[76]
Martinez-Guryn, K.; Hubert, N.; Frazier, K.; Urlass, S.; Musch, M.W.; Ojeda, P.; Pierre, J.F.; Miyoshi, J.; Sontag, T.J.; Cham, C.M.; Reardon, C.A.; Leone, V.; Chang, E.B. Small intestine microbiota regulate host digestive and absorptive adaptive responses to dietary lipids. Cell Host Microbe, 2018, 23(4), 458-469.e5.
[http://dx.doi.org/10.1016/j.chom.2018.03.011] [PMID: 29649441]
[77]
He, X.; McClorry, S.; Hernell, O.; Lönnerdal, B.; Slupsky, C.M. Digestion of human milk fat in healthy infants. Nutr. Res., 2020, 83, 15-29.
[http://dx.doi.org/10.1016/j.nutres.2020.08.002] [PMID: 32987285]
[78]
Liu, M.; Shen, L.; Yang, Q.; Nauli, A.M.; Bingamon, M.; Wang, D.Q.H.; Ulrich-Lai, Y.M.; Tso, P. Sexual dimorphism in intestinal absorption and lymphatic transport of dietary lipids. J. Physiol., 2021, 599(22), 5015-5030.
[http://dx.doi.org/10.1113/JP281621] [PMID: 34648185]
[79]
Bernard, J.Y.; Tint, M.T.; Aris, I.M.; Chen, L.W.; Quah, P.L.; Tan, K.H.; Yeo, G.S.H.; Fortier, M.V.; Yap, F.; Shek, L.; Chong, Y.S.; Gluckman, P.D.; Godfrey, K.M.; Calder, P.C.; Chong, M.F.F.; Kramer, M.S.; Botton, J.; Lee, Y.S. Maternal plasma phosphatidylcholine polyunsaturated fatty acids during pregnancy and offspring growth and adiposity. Prostaglandins Leukot. Essent. Fatty Acids, 2017, 121, 21-29.
[http://dx.doi.org/10.1016/j.plefa.2017.05.006] [PMID: 28651694]
[80]
Şensoy, E.; Öznurlu, Y. Determination of the changes on the small intestine of pregnant mice by histological, enzyme histochemical, and immunohistochemical methods. Turk. J. Gastroenterol., 2019, 30(10), 917-924.
[http://dx.doi.org/10.5152/tjg.2019.18681] [PMID: 31625934]
[81]
Yeo, E.; Brubaker, P.L.; Sloboda, D.M. The intestine and the microbiota in maternal glucose homeostasis during pregnancy. J. Endocrinol., 2022, 253(1), R1-R19.
[http://dx.doi.org/10.1530/JOE-21-0354] [PMID: 35099411]
[82]
Mallott, E.K.; Borries, C.; Koenig, A.; Amato, K.R.; Lu, A. Reproductive hormones mediate changes in the gut microbiome during pregnancy and lactation in Phayre’s leaf monkeys. Sci. Rep., 2020, 10(1), 9961.
[http://dx.doi.org/10.1038/s41598-020-66865-2] [PMID: 32561791]
[83]
Miranda, A.R.; Cortez, M.V.; Scotta, A.V.; Soria, E.A. Dietary intake of polyphenols enhances executive/attentional functioning and memory with an improvement of the milk lipid profile of postpartum women from Argentina. J. Intell., 2022, 10(2), 33.
[http://dx.doi.org/10.3390/jintelligence10020033] [PMID: 35736005]
[84]
Demmelmair, H.; Koletzko, B. Lipids in human milk. Best Pract. Res. Clin. Endocrinol. Metab., 2018, 32(1), 57-68.
[http://dx.doi.org/10.1016/j.beem.2017.11.002] [PMID: 29549961]
[85]
Caimari, A.; Mariné-Casadó, R.; Boqué, N.; Crescenti, A.; Arola, L.; del Bas, J.M. Maternal intake of grape seed procyanidins during lactation induces insulin resistance and an adiponectin resistance-like phenotype in rat offspring. Sci. Rep., 2017, 7(1), 12573.
[http://dx.doi.org/10.1038/s41598-017-12597-9] [PMID: 28974704]
[86]
Lin, L.; Zhang, J. Role of intestinal microbiota and metabolites on gut homeostasis and human diseases. BMC Immunol., 2017, 18(1), 2.
[http://dx.doi.org/10.1186/s12865-016-0187-3] [PMID: 28061847]
[87]
Yu, H.N.; Zhu, J.; Pan, W.; Shen, S.R.; Shan, W.G.; Das, U.N. Effects of fish oil with a high content of n-3 polyunsaturated fatty acids on mouse gut microbiota. Arch. Med. Res., 2014, 45(3), 195-202.
[http://dx.doi.org/10.1016/j.arcmed.2014.03.008] [PMID: 24681186]
[88]
Vicentini, F.A.; Keenan, C.M.; Wallace, L.E.; Woods, C.; Cavin, J.B.; Flockton, A.R.; Macklin, W.B.; Belkind-Gerson, J.; Hirota, S.A.; Sharkey, K.A. Intestinal microbiota shapes gut physiology and regulates enteric neurons and glia. Microbiome, 2021, 9(1), 210.
[http://dx.doi.org/10.1186/s40168-021-01165-z] [PMID: 34702353]
[89]
Stražar, M.; Temba, G.S.; Vlamakis, H.; Kullaya, V.I.; Lyamuya, F.; Mmbaga, B.T.; Joosten, L.A.B.; van der Ven, A.J.A.M.; Netea, M.G.; de Mast, Q.; Xavier, R.J. Gut microbiome-mediated metabolism effects on immunity in rural and urban African populations. Nat. Commun., 2021, 12(1), 4845.
[http://dx.doi.org/10.1038/s41467-021-25213-2] [PMID: 34381036]
[90]
Das, U.N. Is there a role for bioactive lipids in the pathobiology of diabetes mellitus? Front. Endocrinol., 2017, 8, 182.
[http://dx.doi.org/10.3389/fendo.2017.00182] [PMID: 28824543]
[91]
Vitellio, P.; Celano, G.; Bonfrate, L.; Gobbetti, M.; Portincasa, P.; De Angelis, M. Effects of Bifidobacterium longum and Lactobacillus rhamnosus on gut microbiota in patients with lactose intolerance and persisting functional gastrointestinal symptoms: A randomised, double-blind, cross-over study. Nutrients, 2019, 11(4), 886.
[http://dx.doi.org/10.3390/nu11040886] [PMID: 31010241]
[92]
Spychala, M.S.; Venna, V.R.; Jandzinski, M.; Doran, S.J.; Durgan, D.J.; Ganesh, B.P.; Ajami, N.J.; Putluri, N.; Graf, J.; Bryan, R.M.; McCullough, L.D. Age-related changes in the gut microbiota influence systemic inflammation and stroke outcome. Ann. Neurol., 2018, 84(1), 23-36.
[http://dx.doi.org/10.1002/ana.25250] [PMID: 29733457]
[93]
Plaza-Díaz, J.; Álvarez-Mercado, A.I.; Ruiz-Marín, C.M.; Reina-Pérez, I.; Pérez-Alonso, A.J.; Sánchez-Andujar, M.B.; Torné, P.; Gallart-Aragón, T.; Sánchez-Barrón, M.T.; Reyes Lartategui, S.; García, F.; Chueca, N.; Moreno-Delgado, A.; Torres-Martínez, K.; Sáez-Lara, M.J.; Robles-Sánchez, C.; Fernández, M.F.; Fontana, L. Association of breast and gut microbiota dysbiosis and the risk of breast cancer: A case-control clinical study. BMC Cancer, 2019, 19(1), 495.
[http://dx.doi.org/10.1186/s12885-019-5660-y] [PMID: 31126257]
[94]
Brosseau, C.; Selle, A.; Duval, A.; Misme-Aucouturier, B.; Chesneau, M.; Brouard, S.; Cherbuy, C.; Cariou, V.; Bouchaud, G.; Mincham, K.T.; Strickland, D.H.; Barbarot, S.; Bodinier, M. Prebiotic supplementation during pregnancy modifies the gut microbiota and increases metabolites in amniotic fluid, driving a tolerogenic environment in utero. Front. Immunol., 2021, 12, 712614.
[http://dx.doi.org/10.3389/fimmu.2021.712614] [PMID: 34335628]
[95]
Liu, Y.; Qin, S.; Song, Y.; Feng, Y.; Lv, N.; Xue, Y.; Liu, F.; Wang, S.; Zhu, B.; Ma, J.; Yang, H. The perturbation of infant gut microbiota caused by cesarean delivery is partially restored by exclusive breastfeeding. Front. Microbiol., 2019, 10, 598.
[http://dx.doi.org/10.3389/fmicb.2019.00598] [PMID: 30972048]
[96]
Kates, A.E.; Jarrett, O.; Skarlupka, J.H.; Sethi, A.; Duster, M.; Watson, L.; Suen, G.; Poulsen, K.; Safdar, N. Household pet ownership and the microbial diversity of the human gut microbiota. Front. Cell. Infect. Microbiol., 2020, 10, 73.
[http://dx.doi.org/10.3389/fcimb.2020.00073] [PMID: 32185142]
[97]
Jian, C.; Silvestre, M.P.; Middleton, D.; Korpela, K.; Jalo, E.; Broderick, D.; de Vos, W.M.; Fogelholm, M.; Taylor, M.W.; Raben, A.; Poppitt, S.; Salonen, A. Gut microbiota predicts body fat change following a low-energy diet: A PREVIEW intervention study. Genome Med., 2022, 14(1), 54.
[http://dx.doi.org/10.1186/s13073-022-01053-7] [PMID: 35599315]
[98]
Vich Vila, A.; Collij, V.; Sanna, S.; Sinha, T.; Imhann, F.; Bourgonje, A.R.; Mujagic, Z.; Jonkers, D.M.A.E.; Masclee, A.A.M.; Fu, J.; Kurilshikov, A.; Wijmenga, C.; Zhernakova, A.; Weersma, R.K. Impact of commonly used drugs on the composition and metabolic function of the gut microbiota. Nat. Commun., 2020, 11(1), 362.
[http://dx.doi.org/10.1038/s41467-019-14177-z]
[99]
Motiani, K.K.; Collado, M.C.; Eskelinen, J.J.; Virtanen, K.A.; Löyttyniemi, E.; Salminen, S.; Nuutila, P.; Kalliokoski, K.K.; Hannukainen, J.C. Exercise training modulates gut microbiota profile and improves endotoxemia. Med Sci Sports Exerc., 2020, 52(1), 94-104.
[http://dx.doi.org/10.1249/MSS.0000000000002112]
[100]
Kundu, P.; Lee, H.U.; Tay, E.X.Y.; Kim, H.; Faylon, L.E.; Martin, K.A.; Purbojati, R.; Drautz-Moses, D.I; Ghosh, S. Neurogenesis and prolongevity signaling in young germ-free mice transplanted with the gut microbiota of old mice. Sci. Transl. Med., 2019, 11, eaau4760.
[http://dx.doi.org/10.1126/scitranslmed.aau4760]
[101]
Santos-Marcos, J.A.; Haro, C.; Vega-Rojas, A.; Alcala-Diaz, J.F.; Molina-Abril, H.; Leon-Acuña, A.; Lopez-Moreno, J.; Landa, B.B.; Tena-Sempere, M.; Perez-Martinez, P.; Lopez-Miranda, J.; Perez-Jimenez, F.; Camargo, A. Sex differences in the gut microbiota as potential determinants of gender predisposition to disease. Mol. Nutr. Food Res., 2019, 63(7), 1800870.
[http://dx.doi.org/10.1002/mnfr.201800870] [PMID: 30636111]
[102]
Min, Y.; Ma, X.; Sankaran, K.; Ru, Y.; Chen, L.; Baiocchi, M.; Zhu, S. Sex-specific association between gut microbiome and fat distribution. Nat. Commun., 2019, 10(1), 2408.
[http://dx.doi.org/10.1038/s41467-019-10440-5] [PMID: 31160598]
[103]
Zmora, N.; Suez, J.; Elinav, E. You are what you eat: Diet, health and the gut microbiota. Nat. Rev. Gastroenterol. Hepatol., 2019, 16(1), 35-56.
[http://dx.doi.org/10.1038/s41575-018-0061-2] [PMID: 30262901]
[104]
Kindt, A.; Liebisch, G.; Clavel, T.; Haller, D.; Hörmannsperger, G.; Yoon, H.; Kolmeder, D.; Sigruener, A.; Krautbauer, S.; Seeliger, C.; Ganzha, A.; Schweizer, S.; Morisset, R.; Strowig, T.; Daniel, H.; Helm, D.; Küster, B.; Krumsiek, J.; Ecker, J. The gut microbiota promotes hepatic fatty acid desaturation and elongation in mice. Nat. Commun., 2018, 9(1), 3760.
[http://dx.doi.org/10.1038/s41467-018-05767-4] [PMID: 30218046]
[105]
Patterson, E.; Wall, R.; Lisai, S.; Ross, R.P.; Dinan, T.G.; Cryan, J.F.; Fitzgerald, G.F.; Banni, S.; Quigley, E.M.; Shanahan, F.; Stanton, C. Bifidobacterium breve with α-linolenic acid alters the composition, distribution and transcription factor activity associated with metabolism and absorption of fat. Sci. Rep., 2017, 7(1), 43300.
[http://dx.doi.org/10.1038/srep43300] [PMID: 28265110]
[106]
Morito, K.; Shimizu, R.; Kitamura, N.; Park, S.B.; Kishino, S.; Ogawa, J.; Fukuta, T.; Kogure, K.; Tanaka, T. Gut microbial metabolites of linoleic acid are metabolized by accelerated peroxisomal β-oxidation in mammalian cells. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2019, 1864(11), 1619-1628.
[http://dx.doi.org/10.1016/j.bbalip.2019.07.010] [PMID: 31351225]
[107]
Miyamoto, J.; Igarashi, M.; Watanabe, K.; Karaki, S.; Mukouyama, H.; Kishino, S.; Li, X.; Ichimura, A.; Irie, J.; Sugimoto, Y.; Mizutani, T.; Sugawara, T.; Miki, T.; Ogawa, J.; Drucker, D.J.; Arita, M.; Itoh, H.; Kimura, I. Gut microbiota confers host resistance to obesity by metabolizing dietary polyunsaturated fatty acids. Nat. Commun., 2019, 10(1), 4007.
[http://dx.doi.org/10.1038/s41467-019-11978-0] [PMID: 31488836]
[108]
Lee, H.C.; Yu, S.C.; Lo, Y.C.; Lin, I.H.; Tung, T.H.; Huang, S.Y. A high linoleic acid diet exacerbates metabolic responses and gut microbiota dysbiosis in obese rats with diabetes mellitus. Food Funct., 2019, 10(2), 786-798.
[http://dx.doi.org/10.1039/C8FO02423E] [PMID: 30672576]
[109]
Nagatake, T.; Kishino, S.; Urano, E.; Murakami, H.; Kitamura, N.; Konishi, K.; Ohno, H.; Tiwari, P.; Morimoto, S.; Node, E.; Adachi, J.; Abe, Y.; Isoyama, J.; Sawane, K.; Honda, T.; Inoue, A.; Uwamizu, A.; Matsuzaka, T.; Miyamoto, Y.; Hirata, S.; Saika, A.; Shibata, Y.; Hosomi, K.; Matsunaga, A.; Shimano, H.; Arita, M.; Aoki, J.; Oka, M.; Matsutani, A.; Tomonaga, T.; Kabashima, K.; Miyachi, M.; Yasutomi, Y.; Ogawa, J.; Kunisawa, J. Intestinal microbe-dependent ω3 lipid metabolite αKetoA prevents inflammatory diseases in mice and cynomolgus macaques. Mucosal Immunol., 2022, 15(2), 289-300.
[http://dx.doi.org/10.1038/s41385-021-00477-5] [PMID: 35013573]
[110]
Yoon, K.; Kim, N. Roles of sex hormones and gender in the gut microbiota. J. Neurogastroenterol. Motil., 2021, 27(3), 314-325.
[http://dx.doi.org/10.5056/jnm20208] [PMID: 33762473]
[111]
Song, C.H.; Kim, N.; Nam, R.H.; Choi, S.I.; Lee, H.N.; Surh, Y.J. 17β-Estradiol supplementation changes gut microbiota diversity in intact and colorectal cancer-induced ICR male mice. Sci. Rep., 2020, 10(1), 12283.
[http://dx.doi.org/10.1038/s41598-020-69112-w] [PMID: 32704056]
[112]
Zeibich, L.; Koebele, S.V.; Bernaud, V.E.; Ilhan, Z.E.; Dirks, B.; Northup-Smith, S.N.; Neeley, R.; Maldonado, J.; Nirmalkar, K.; Files, J.A.; Mayer, A.P.; Bimonte-Nelson, H.A.; Krajmalnik-Brown, R. Surgical menopause and estrogen therapy modulate the gut microbiota, obesity markers, and spatial memory in rats. Front. Cell. Infect. Microbiol., 2021, 11, 702628.
[http://dx.doi.org/10.3389/fcimb.2021.702628] [PMID: 34660336]
[113]
Kamimura, I.; Watarai, A.; Takamura, T.; Takeo, A.; Miura, K.; Morita, H.; Mogi, K.; Kikusui, T. Gonadal steroid hormone secretion during the juvenile period depends on host-specific microbiota and contributes to the development of odor preference. Dev. Psychobiol., 2019, 61(5), 670-678.
[http://dx.doi.org/10.1002/dev.21827] [PMID: 30680708]
[114]
Colldén, H.; Landin, A.; Wallenius, V.; Elebring, E.; Fändriks, L.; Nilsson, M.E.; Ryberg, H.; Poutanen, M.; Sjögren, K.; Vandenput, L.; Ohlsson, C. The gut microbiota is a major regulator of androgen metabolism in intestinal contents. Am. J. Physiol. Endocrinol. Metab., 2019, 317(6), E1182-E1192.
[http://dx.doi.org/10.1152/ajpendo.00338.2019] [PMID: 31689143]
[115]
Gosalbes, M.J.; Compte, J.; Moriano-Gutierrez, S.; Vallès, Y.; Jiménez-Hernández, N.; Pons, X.; Artacho, A.; Francino, M.P. Metabolic adaptation in the human gut microbiota during pregnancy and the first year of life. EBioMedicine, 2019, 39, 497-509.
[http://dx.doi.org/10.1016/j.ebiom.2018.10.071] [PMID: 30415891]
[116]
Santos-Marcos, J.A.; Rangel-Zuñiga, O.A.; Jimenez-Lucena, R.; Quintana-Navarro, G.M.; Garcia-Carpintero, S.; Malagon, M.M.; Landa, B.B.; Tena-Sempere, M.; Perez-Martinez, P.; Lopez-Miranda, J.; Perez-Jimenez, F.; Camargo, A. Influence of gender and menopausal status on gut microbiota. Maturitas, 2018, 116, 43-53.
[http://dx.doi.org/10.1016/j.maturitas.2018.07.008] [PMID: 30244778]
[117]
Yuan, X.; Chen, R.; Zhang, Y.; Lin, X.; Yang, X. Sexual dimorphism of gut microbiota at different pubertal status. Microb. Cell Fact., 2020, 19(1), 152.
[http://dx.doi.org/10.1186/s12934-020-01412-2] [PMID: 32723385]
[118]
Baars, A.; Oosting, A.; Lohuis, M.; Koehorst, M.; El Aidy, S.; Hugenholtz, F.; Smidt, H.; Mischke, M.; Boekschoten, M.V.; Verkade, H.J.; Garssen, J.; van der Beek, E.M.; Knol, J.; de Vos, P.; van Bergenhenegouwen, J.; Fransen, F. Sex differences in lipid metabolism are affected by presence of the gut microbiota. Sci. Rep., 2018, 8(1), 13426.
[http://dx.doi.org/10.1038/s41598-018-31695-w] [PMID: 30194317]
[119]
Huang, X.; Gao, J.; Zhao, Y.; He, M.; Ke, S.; Wu, J.; Zhou, Y.; Fu, H.; Yang, H.; Chen, C.; Huang, L. Dramatic remodeling of the gut microbiome around parturition and its relationship with host serum metabolic changes in sows. Front. Microbiol., 2019.
[http://dx.doi.org/10.3389/fmicb.2019.02123]
[120]
Han, M.M.; Sun, J.F.; Su, X.H.; Peng, Y.F.; Ke, S.; Goyal, H.; Wu, C.H.; Fu, H.; Zhu, X.Y.; Li, L. Probiotics improve glucose and lipid metabolism in pregnant women: A meta-analysis.. Ann. Transl. Med., 2019, 7, 99.
[http://dx.doi.org/10.21037/atm.2019.01.61]
[121]
Ziętek, M.; Celewicz, Z.; Kikut, J.; Szczuko, M. Implications of SCFAs on the Parameters of the Lipid and Hepatic Profile in Pregnant Women. Nutrients, 2021, 13(6), 1749.
[http://dx.doi.org/10.3390/nu13061749] [PMID: 34063900]
[122]
Meng, Q.; Ma, M.; Zhang, W.; Bi, Y.; Cheng, P.; Yu, X.; Fu, Y.; Chao, Y.; Ji, T.; Li, J.; Chen, Q.; Zhang, Q.; Li, Y.; Shan, J.; Bian, H. The gut microbiota during the progression of atherosclerosis in the perimenopausal period shows specific compositional changes and significant correlations with circulating lipid metabolites. Gut Microbes, 2021, 13(1), 1880220.
[http://dx.doi.org/10.1080/19490976.2021.1880220] [PMID: 33691599]
[123]
Lei, Z.; Wu, H.; Yang, Y.; Hu, Q.; Lei, Y.; Liu, W.; Nie, Y.; Yang, L.; Zhang, X.; Yang, C.; Lin, T.; Tong, F.; Zhu, J.; Guo, J. Ovariectomy impaired hepatic glucose and lipid homeostasis and altered the gut microbiota in mice with different diets. Front. Endocrinol., 2021, 12, 708838.
[http://dx.doi.org/10.3389/fendo.2021.708838] [PMID: 34276568]
[124]
Drygalski, K.; Berk, K.; Charytoniuk, T.; Iłowska, N.; Łukaszuk, B.; Chabowski, A.; Konstantynowicz-Nowicka, K. Does the enterolactone (ENL) affect fatty acid transporters and lipid metabolism in liver? Nutr. Metab., 2017, 14(1), 69.
[http://dx.doi.org/10.1186/s12986-017-0223-1] [PMID: 29158770]
[125]
Pei, K.; Gui, T.; Kan, D.; Feng, H.; Jin, Y.; Yang, Y.; Zhang, Q.; Du, Z.; Gai, Z.; Wu, J.; Li, Y. An overview of lipid metabolism and nonalcoholic fatty liver disease. BioMed Res. Int., 2020, 2020, 1-12.
[http://dx.doi.org/10.1155/2020/4020249] [PMID: 32733940]
[126]
He, C.; Shen, W.; Chen, C.; Wang, Q.; Lu, Q.; Shao, W.; Jiang, Z.; Hu, H. Circadian rhythm disruption influenced hepatic lipid metabolism, gut microbiota and promoted cholesterol gallstone formation in mice. Front. Endocrinol., 2021, 12, 723918.
[http://dx.doi.org/10.3389/fendo.2021.723918] [PMID: 34745000]
[127]
Spitler, K.M.; Shetty, S.K.; Cushing, E.M.; Sylvers-Davie, K.L.; Davies, B.S.J. Chronic high-fat feeding and prolonged fasting in liver-specific ANGPTL4 knockout mice. Am. J. Physiol. Endocrinol. Metab., 2021, 321(4), E464-E478.
[http://dx.doi.org/10.1152/ajpendo.00144.2021] [PMID: 34396783]
[128]
Ortiz-Huidobro, R.I.; Velasco, M.; Larqué, C.; Escalona, R.; Hiriart, M. Molecular insulin actions are sexually dimorphic in lipid metabolism. Front. Endocrinol., 2021, 12, 690484.
[http://dx.doi.org/10.3389/fendo.2021.690484] [PMID: 34220716]
[129]
Das, U.N.; Repossi, G.; Dain, A.; Eynard, A.R. Is insulin resistance a disorder of the brain? Front. Biosci., 2011, 16(1), 1-12.
[http://dx.doi.org/10.2741/3671] [PMID: 21196154]
[130]
Di Cesare, F.; Luchinat, C.; Tenori, L.; Saccenti, E. Age- and sex-dependent changes of free circulating blood metabolite and lipid abundances, correlations, and ratios. J. Gerontol. A Biol. Sci. Med. Sci., 2022, 77(5), 918-926.
[http://dx.doi.org/10.1093/gerona/glab335] [PMID: 34748631]
[131]
Meng, Q.; Li, Y.; Ji, T.; Chao, Y.; Li, J.; Fu, Y.; Wang, S.; Chen, Q.; Chen, W.; Huang, F.; Wang, Y.; Zhang, Q.; Wang, X.; Bian, H. Estrogen prevent atherosclerosis by attenuating endothelial cell pyroptosis via activation of estrogen receptor α-mediated autophagy. J. Adv. Res., 2021, 28, 149-164.
[http://dx.doi.org/10.1016/j.jare.2020.08.010] [PMID: 33364052]
[132]
Zhang, J.B.; Guo, C.L. Protective effect and mechanism of estrogen receptor β on myocardial infarction in mice. Exp. Ther. Med., 2017, 14(2), 1315-1320.
[http://dx.doi.org/10.3892/etm.2017.4628] [PMID: 28810592]
[133]
Mishra, S.R.; Chung, H-F.; Waller, M.; Mishra, G.D. Duration of estrogen exposure during reproductive years, age at menarche and age at menopause, and risk of cardiovascular disease events, all-cause and cardiovascular mortality: A systematic review and meta-analysis. BJOG, 2021, 128(5), 809-821.
[http://dx.doi.org/10.1111/1471-0528.16524] [PMID: 32965759]
[134]
Villa, A.; Della Torre, S.; Stell, A.; Cook, J.; Brown, M.; Maggi, A. Tetradian oscillation of estrogen receptor α is necessary to prevent liver lipid deposition. Proc. Natl. Acad. Sci., 2012, 109(29), 11806-11811.
[http://dx.doi.org/10.1073/pnas.1205797109] [PMID: 22761311]
[135]
Della Torre, S.; Mitro, N.; Fontana, R.; Gomaraschi, M.; Favari, E.; Recordati, C.; Lolli, F.; Quagliarini, F.; Meda, C.; Ohlsson, C.; Crestani, M.; Uhlenhaut, N.H.; Calabresi, L.; Maggi, A. An essential role for liver ERα in coupling hepatic metabolism to the reproductive cycle. Cell Rep., 2016, 15(2), 360-371.
[http://dx.doi.org/10.1016/j.celrep.2016.03.019] [PMID: 27050513]
[136]
Yang, D.; Huynh, H.; Wan, Y. Milk lipid regulation at the maternal-offspring interface. Semin. Cell Dev. Biol., 2018, 81, 141-148.
[http://dx.doi.org/10.1016/j.semcdb.2017.10.012] [PMID: 29051053]
[137]
Jaballah, A.; Soltani, I.; Bahia, W.; Dandana, A.; Hasni, Y.; Miled, A.; Ferchichi, S. The relationship between menopause and metabolic syndrome: experimental and bioinformatics analysis. Biochem. Genet., 2021, 59(6), 1558-1581.
[http://dx.doi.org/10.1007/s10528-021-10066-7] [PMID: 33973091]
[138]
Hodson, L.; Banerjee, R.; Rial, B.; Arlt, W.; Adiels, M.; Boren, J.; Marinou, K.; Fisher, C.; Mostad, I.L.; Stratton, I.M.; Barrett, P.H.R.; Chan, D.C.; Watts, G.F.; Harnden, K.; Karpe, F.; Fielding, B.A. Menopausal status and abdominal obesity are significant determinants of hepatic lipid metabolism in women. J. Am. Heart Assoc., 2015, 4(10), e002258.
[http://dx.doi.org/10.1161/JAHA.115.002258] [PMID: 26432801]
[139]
Lee, Y.H.; Son, J.Y.; Kim, K.S.; Park, Y.J.; Kim, H.R.; Park, J.H.; Kim, K.B.; Lee, K.Y.; Kang, K.W.; Kim, I.S.; Kacew, S.; Lee, B.M.; Kim, H.S. Estrogen deficiency potentiates thioacetamide-induced hepatic fibrosis in Sprague-Dawley rats. Int. J. Mol. Sci., 2019, 20(15), 3709.
[http://dx.doi.org/10.3390/ijms20153709] [PMID: 31362375]
[140]
Malinská, H.; Hüttl, M.; Miklánková, D.; Trnovská, J.; Zapletalová, I.; Poruba, M.; Marková, I. Ovariectomy-induced hepatic lipid and cytochrome p450 dysmetabolism precedes serum dyslipidemia. Int. J. Mol. Sci., 2021, 22(9), 4527.
[http://dx.doi.org/10.3390/ijms22094527] [PMID: 33926097]
[141]
Comba, A.; Almada, L.L.; Tolosa, E.J.; Iguchi, E.; Marks, D.L.; Vara Messler, M.; Silva, R.; Fernandez-Barrena, M.G.; Enriquez-Hesles, E.; Vrabel, A.L.; Botta, B.; Di Marcotulio, L.; Ellenrieder, V.; Eynard, A.R.; Pasqualini, M.E.; Fernandez-Zapico, M.E. Nuclear factor of activated t cells-dependent down-regulation of the transcription factor glioma-associated protein 1 (GLI1) underlies the growth inhibitory properties of arachidonic acid. J. Biol. Chem., 2016, 291(4), 1933-1947.
[http://dx.doi.org/10.1074/jbc.M115.691972] [PMID: 26601952]
[142]
Comba, A.; Lin, Y.H.; Eynard, A.R.; Valentich, M.A.; Fernandez-Zapico, M.E.; Pasqualini, M.E. Basic aspects of tumor cell fatty acid-regulated signaling and transcription factors. Cancer Metastasis Rev., 2011, 30(3-4), 325-342.
[http://dx.doi.org/10.1007/s10555-011-9308-x] [PMID: 22048864]
[143]
Yeh, J.H.; Tung, Y.T.; Yeh, Y.S.; Chien, Y.W. Effects of dietary fatty acid composition on lipid metabolism and body fat accumulation in ovariectomized rats. Nutrients, 2021, 13(6), 2022.
[http://dx.doi.org/10.3390/nu13062022] [PMID: 34208400]
[144]
Ostermann, A.I.; Waindok, P.; Schmidt, M.J.; Chiu, C.Y.; Smyl, C.; Rohwer, N.; Weylandt, K.H.; Schebb, N.H. Modulation of the endogenous omega-3 fatty acid and oxylipin profile in vivo—A comparison of the fat-1 transgenic mouse with C57BL/6 wildtype mice on an omega-3 fatty acid enriched diet. PLoS One, 2017, 12(9), e0184470.
[http://dx.doi.org/10.1371/journal.pone.0184470] [PMID: 28886129]
[145]
Ciucanu, C.I.; Vlad, D.C.; Ciucanu, I.; Dumitraşcu, V. Selective and fast methylation of free fatty acids directly in plasma for their individual analysis by gas chromatography- mass spectrometry. J. Chromatogr. A, 2020, 1624, 461259.
[http://dx.doi.org/10.1016/j.chroma.2020.461259] [PMID: 32540084]
[146]
Coverdale, J.P.C.; Khazaipoul, S.; Arya, S.; Stewart, A.J.; Blindauer, C.A. Crosstalk between zinc and free fatty acids in plasma. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2019, 1864(4), 532-542.
[http://dx.doi.org/10.1016/j.bbalip.2018.09.007] [PMID: 30266430]
[147]
Huber, A.H.; Kleinfeld, A.M. Unbound free fatty acid profiles in human plasma and the unexpected absence of unbound palmitoleate. J Lipid Res, 2017, 58(3), 578-585.
[http://dx.doi.org/10.1194/jlr.M074260]
[148]
Dain, A.; Repossi, G; Das, U.N.; Eynard, A.R. Role of PUFAs, the precursors of endocannabinoids, in human obesity and type 2 diabetes. Front. Biosci., 2010, 2(3), 1432-1447.
[http://dx.doi.org/10.2741/e203]
[149]
Danielewski, M.; Matuszewska, A.; Szeląg, A.; Sozański, T. The impact of anthocyanins and iridoids on transcription factors crucial for lipid and cholesterol homeostasis. Int. J. Mol. Sci., 2021, 22(11), 6074.
[http://dx.doi.org/10.3390/ijms22116074] [PMID: 34199904]
[150]
Nguyen, T.T.P.; Kim, D.Y.; Lee, Y.G.; Lee, Y.S.; Truong, X.T.; Lee, J.H.; Song, D.K.; Kwon, T.K.; Park, S.H.; Jung, C.H.; Moon, C.; Osborne, T.F.; Im, S.S.; Jeon, T.I. SREBP-1c impairs ULK1 sulfhydration-mediated autophagic flux to promote hepatic steatosis in high-fat-diet-fed mice. Mol. Cell, 2021, 81(18), 3820-3832.e7.
[http://dx.doi.org/10.1016/j.molcel.2021.06.003] [PMID: 34233158]
[151]
Wang, T.Y.; Wang, X.H. [Effects of aerobic exercise on PPARα signaling in diabetes rats and its association with PPARγ]. Chung Kuo Ying Yung Sheng Li Hsueh Tsa Chih, 2020, 36(4), 312-317.
[http://dx.doi.org/10.12047/j.cjap.5945.2020.067] [PMID: 33167089]
[152]
Lankinen, M.; Uusitupa, M.; Schwab, U. Genes and dietary fatty acids in regulation of fatty acid composition of plasma and erythrocyte membranes. Nutrients, 2018, 10(11), 1785.
[http://dx.doi.org/10.3390/nu10111785] [PMID: 30453550]
[153]
Dain, A.; Repossi, G.; Diaz-Gerevini, G.T.; Vanamala, J.; Das, U.N.; Eynard, A.R. Long chain polyunsaturated fatty acids (LCPUFAs) and nordihydroguaiaretic acid (NDGA) modulate metabolic and inflammatory markers in a spontaneous type 2 diabetes mellitus model (Stillman Salgado rats). Lipids Health Dis., 2016, 15(1), 205.
[http://dx.doi.org/10.1186/s12944-016-0363-8] [PMID: 27884155]
[154]
Kim, D.; Choi, J.E.; Park, Y. Low-linoleic acid diet and oestrogen enhance the conversion of α -linolenic acid into DHA through modification of conversion enzymes and transcription factors. Br. J. Nutr., 2019, 121(2), 137-145.
[http://dx.doi.org/10.1017/S0007114518003252] [PMID: 30507367]
[155]
Zhao, L.; Hao, F.; Huang, J.; Liu, X.; Ma, X.; Wang, C.; Bao, Y.; Wang, L.; Jia, W.; Zhao, A.; Jia, W. Sex- and age-related metabolic characteristics of serum free fatty acids in healthy chinese adults. J. Proteome Res., 2020, 19(4), 1383-1391.
[http://dx.doi.org/10.1021/acs.jproteome.9b00502] [PMID: 32096398]
[156]
Pérez-Mendoza, M.; Rivera-Zavala, J.B.; Rodríguez-Guadarrama, A.H.; Montoya-Gomez, L.M.; Carmona-Castro, A.; Díaz-Muñoz, M.; Miranda-Anaya, M. Daily cycle in hepatic lipid metabolism in obese mice, Neotomodon alstoni : Sex differences. Chronobiol. Int., 2018, 35(5), 643-657.
[http://dx.doi.org/10.1080/07420528.2018.1424178] [PMID: 29370528]
[157]
Chopra, S.; Rathore, A.; Younas, H.; Pham, L.V.; Gu, C.; Beselman, A.; Kim, I.Y.; Wolfe, R.R.; Perin, J.; Polotsky, V.Y.; Jun, J.C. Obstructive sleep apnea dynamically increases nocturnal plasma free fatty acids, glucose, and cortisol during sleep. J. Clin. Endocrinol. Metab., 2017, 102(9), 3172-3181.
[http://dx.doi.org/10.1210/jc.2017-00619] [PMID: 28595341]
[158]
Kim, K.; Browne, R.W.; Nobles, C.J.; Radin, R.G.; Holland, T.L.; Omosigho, U.R.; Connell, M.T.; Plowden, T.C.; Wilcox, B.D.; Silver, R.M.; Perkins, N.J.; Schisterman, E.F.; Nichols, C.M.; Kuhr, D.L.; Sjaarda, L.A.; Mumford, S.L. Associations between preconception plasma fatty acids and pregnancy outcomes. Epidemiology, 2019, 30(S2), S37-S46.
[http://dx.doi.org/10.1097/EDE.0000000000001066] [PMID: 31569151]
[159]
Mirabi, P.; Chaichi, M.J.; Esmaeilzadeh, S.; Ali Jorsaraei, S.G.; Bijani, A.; Ehsani, M.; hashemi Karooee, S.F. The role of fatty acids on ICSI outcomes: A prospective cohort study. Lipids Health Dis., 2017, 16(1), 18.
[http://dx.doi.org/10.1186/s12944-016-0396-z] [PMID: 28109274]
[160]
Zamai, N.; Cortie, C.H.; Jarvie, E.M.; Onyiaodike, C.C.; Alrehaili, A.; Francois, M.; Freeman, D.J.; Meyer, B.J. In pregnancy, maternal HDL is specifically enriched in, and carries the highest proportion of, DHA in plasma. Prostaglandins Leukot. Essent. Fatty Acids, 2020, 163, 102209.
[http://dx.doi.org/10.1016/j.plefa.2020.102209] [PMID: 33227644]
[161]
Furse, S.; Fernandez-Twinn, D.S.; Chiarugi, D.; Koulman, A.; Ozanne, S.E. Lipid metabolism is dysregulated before, during and after pregnancy in a mouse model of gestational diabetes. Int. J. Mol. Sci., 2021, 22(14), 7452.
[http://dx.doi.org/10.3390/ijms22147452] [PMID: 34299070]
[162]
Wilson, N.A.; Mantzioris, E.; Middleton, P.T.; Muhlhausler, B.S. Gestational age and maternal status of DHA and other polyunsaturated fatty acids in pregnancy: A systematic review. Prostaglandins Leukot. Essent. Fatty Acids, 2019, 144, 16-31.
[http://dx.doi.org/10.1016/j.plefa.2019.04.006] [PMID: 31088623]
[163]
Woodard, V.; Thoene, M.; Van Ormer, M.; Thompson, M.; Hanson, C.; Natarajan, S.; Mukherjee, M.; Yuil-Valdes, A.; Nordgren, T.; Ulu, A.; Harris Jackson, K.; Anderson-Berry, A. Intrauterine transfer of polyunsaturated fatty acids in mother–infant dyads as analyzed at time of delivery. Nutrients, 2021, 13(3), 996.
[http://dx.doi.org/10.3390/nu13030996] [PMID: 33808763]
[164]
Xu, H.F.; Luo, J.; Zhang, X.Y.; Li, J.; Bionaz, M. Activation of liver X receptor promotes fatty acid synthesis in goat mammary epithelial cells via modulation of SREBP1 expression. J. Dairy Sci., 2019, 102(4), 3544-3555.
[http://dx.doi.org/10.3168/jds.2018-15538] [PMID: 30738675]
[165]
Zhao, L.; Ke, H.; Xu, H.; Wang, G.D.; Zhang, H.; Zou, L.; Xiang, S.; Li, M.; Peng, L.; Zhou, M.; Li, L.; Ao, L.; Yang, Q.; Shen, C.K.J.; Yi, P.; Wang, L.; Jiao, B. TDP-43 facilitates milk lipid secretion by post-transcriptional regulation of Btn1a1 and Xdh. Nat. Commun., 2020, 11(1), 341.
[http://dx.doi.org/10.1038/s41467-019-14183-1] [PMID: 31953403]
[166]
Léveillé, P.; Chouinard-Watkins, R.; Windust, A.; Lawrence, P.; Cunnane, S.C.; Brenna, J.T.; Plourde, M. Metabolism of uniformly labeled 13C-eicosapentaenoic acid and 13C-arachidonic acid in young and old men. Am. J. Clin. Nutr., 2017, 106(2), 467-474.
[http://dx.doi.org/10.3945/ajcn.117.154708] [PMID: 28659301]
[167]
Shetty, V.; Preethika, A.; Kumari, S.N.; Shetty, J. Plasma fatty acids composition and estimated delta desaturases activity in women with breast cancer. J. Cancer Res. Ther., 2020, 16(6), 1382-1386.
[http://dx.doi.org/10.4103/jcrt.JCRT_288_19] [PMID: 33342801]
[168]
Boldarine, V.T.; Pedroso, A.P.; Brandão-Teles, C.; LoTurco, E.G.; Nascimento, C.M.O.; Oyama, L.M.; Bueno, A.A.; Martins-de-Souza, D.; Ribeiro, E.B. Ovariectomy modifies lipid metabolism of retroperitoneal white fat in rats: A proteomic approach. Am. J. Physiol. Endocrinol. Metab., 2020, 319(2), E427-E437.
[http://dx.doi.org/10.1152/ajpendo.00094.2020] [PMID: 32663100]
[169]
Witayavanitkul, N.; Werawatganon, D.; Chayanupatkul, M.; Klaikeaw, N.; Sanguanrungsirikul, S.; Siriviriyakul, P. Genistein and exercise modulated lipid peroxidation and improved steatohepatitis in ovariectomized rats. BMC Complementary Medicine and Therapies, 2020, 20(1), 162.
[http://dx.doi.org/10.1186/s12906-020-02962-z] [PMID: 32482167]
[170]
Aliwarga, T.; Raccor, B.S.; Lemaitre, R.N.; Sotoodehnia, N.; Gharib, S.A.; Xu, L.; Totah, R.A. Enzymatic and free radical formation of cis- and trans- epoxyeicosatrienoic acids in vitro and in vivo. Free Radic. Biol. Med., 2017, 112, 131-140.
[http://dx.doi.org/10.1016/j.freeradbiomed.2017.07.015] [PMID: 28734877]
[171]
Schuster, S.; Johnson, C.D.; Hennebelle, M.; Holtmann, T.; Taha, A.Y.; Kirpich, I.A.; Eguchi, A.; Ramsden, C.E.; Papouchado, B.G.; McClain, C.J.; Feldstein, A.E. Oxidized linoleic acid metabolites induce liver mitochondrial dysfunction, apoptosis, and NLRP3 activation in mice. J. Lipid Res., 2018, 59(9), 1597-1609.
[http://dx.doi.org/10.1194/jlr.M083741] [PMID: 30084831]
[172]
Díaz-Gerevini, G.T.; Repossi, G.; Dain, A.; Tarres, M.C.; Das, U.N.; Eynard, A.R. Cognitive and motor perturbations in elderly with longstanding diabetes mellitus. Nutrition, 2014, 30(6), 628-635.
[http://dx.doi.org/10.1016/j.nut.2013.11.007] [PMID: 24800665]
[173]
Garay, M.I.; Comba, A.; Vara Messler, M.; Barotto, N.N.; Silva, R.A.; Repossi, G.; Quiroga, P.L.; Mazzudulli, G.M.; Brunotto, M.N.; Pasqualini, M.E. Tumorigenic effect mediated by ROS/eicosanoids and their regulation on TP53 expression in a murine mammary gland adenocarcinoma. Prostaglandins Other Lipid Mediat., 2021, 155, 106564.
[http://dx.doi.org/10.1016/j.prostaglandins.2021.106564] [PMID: 34004336]
[174]
Liu, Q.Q.; Huo, H.Y.; Ao, S.; Liu, T.; Yang, L.; Fei, Z.Y.; Zhang, Z.Q.; Ding, L.; Cui, Q.H.; Lin, J.; Yu, M.; Xiong, W. TGF-β1-induced epithelial-mesenchymal transition increases fatty acid oxidation and OXPHOS activity via the p-AMPK pathway in breast cancer cells. Oncol. Rep., 2020, 44(3), 1206-1215.
[http://dx.doi.org/10.3892/or.2020.7661] [PMID: 32705260]
[175]
Chen, F.; Ghosh, A.; Lin, J.; Zhang, C.; Pan, Y.; Thakur, A.; Singh, K.; Hong, H.; Tang, S. 5-lipoxygenase pathway and its downstream cysteinyl leukotrienes as potential therapeutic targets for Alzheimer’s disease. Brain Behav. Immun., 2020, 88, 844-855.
[http://dx.doi.org/10.1016/j.bbi.2020.03.022] [PMID: 32222525]
[176]
Zhuang, P.; Shou, Q.; Lu, Y.; Wang, G.; Qiu, J.; Wang, J.; He, L.; Chen, J.; Jiao, J.; Zhang, Y. Arachidonic acid sex-dependently affects obesity through linking gut microbiota-driven inflammation to hypothalamus-adipose-liver axis. Biochim. Biophys. Acta Mol. Basis Dis., 2017, 1863(11), 2715-2726.
[http://dx.doi.org/10.1016/j.bbadis.2017.07.003] [PMID: 28711599]
[177]
Comba, A.; Maestri, D.M.; Berra, M.A.; Garcia, C.P.; Das, U.N.; Eynard, A.R.; Pasqualini, M.E. Effect of ω-3 and ω-9 fatty acid rich oils on lipoxygenases and cyclooxygenases enzymes and on the growth of a mammary adenocarcinoma model. Lipids Health Dis., 2010, 9(1), 112.
[http://dx.doi.org/10.1186/1476-511X-9-112] [PMID: 20932327]
[178]
Repossi, G.; Das, U.N.; Eynard, A.R. Molecular basis of the beneficial actions of resveratrol. Arch. Med. Res., 2020, 51(2), 105-114.
[http://dx.doi.org/10.1016/j.arcmed.2020.01.010] [PMID: 32111491]
[179]
Kikut, J.; Komorniak, N.; Ziętek, M.; Palma, J.; Szczuko, M. Inflammation with the participation of arachidonic (AA) and linoleic acid (LA) derivatives (HETEs and HODEs) is necessary in the course of a normal reproductive cycle and pregnancy. J. Reprod. Immunol., 2020, 141, 103177.
[http://dx.doi.org/10.1016/j.jri.2020.103177] [PMID: 32659532]
[180]
Werner, M.; Jordan, P.M.; Romp, E.; Czapka, A.; Rao, Z.; Kretzer, C.; Koeberle, A.; Garscha, U.; Pace, S.; Claesson, H.E.; Serhan, C.N.; Werz, O.; Gerstmeier, J. Targeting biosynthetic networks of the proinflammatory and proresolving lipid metabolome. FASEB J., 2019, 33(5), 6140-6153.
[http://dx.doi.org/10.1096/fj.201802509R] [PMID: 30735438]
[181]
Micoogullari, Y.; Basu, S.S.; Ang, J.; Weisshaar, N.; Schmitt, N.D.; Abdelmoula, W.M.; Lopez, B.; Agar, J.N.; Agar, N.; Hanna, J. Dysregulation of very-long-chain fatty acid metabolism causes membrane saturation and induction of the unfolded protein response. Mol. Biol. Cell, 2020, 31(1), 7-17.
[http://dx.doi.org/10.1091/mbc.E19-07-0392] [PMID: 31746669]
[182]
Sun, W.Y.; Tyurin, V.A.; Mikulska-Ruminska, K.; Shrivastava, I.H.; Anthonymuthu, T.S.; Zhai, Y.J.; Pan, M.H.; Gong, H.B.; Lu, D.H.; Sun, J.; Duan, W.J.; Korolev, S.; Abramov, A.Y.; Angelova, P.R.; Miller, I.; Beharier, O.; Mao, G.W.; Dar, H.H.; Kapralov, A.A.; Amoscato, A.A.; Hastings, T.G.; Greenamyre, T.J.; Chu, C.T.; Sadovsky, Y.; Bahar, I.; Bayır, H.; Tyurina, Y.Y.; He, R.R.; Kagan, V.E. Phospholipase iPLA2β averts ferroptosis by eliminating a redox lipid death signal. Nat. Chem. Biol., 2021, 17(4), 465-476.
[http://dx.doi.org/10.1038/s41589-020-00734-x] [PMID: 33542532]
[183]
Yoon, H.; Shaw, J.L.; Haigis, M.C.; Greka, A. Lipid metabolism in sickness and in health: Emerging regulators of lipotoxicity. Mol. Cell, 2021, 81(18), 3708-3730.
[http://dx.doi.org/10.1016/j.molcel.2021.08.027] [PMID: 34547235]
[184]
Amen, T.; Kaganovich, D. Stress granules inhibit fatty acid oxidation by modulating mitochondrial permeability. Cell Rep., 2021, 35(11), 109237.
[http://dx.doi.org/10.1016/j.celrep.2021.109237] [PMID: 34133922]
[185]
Kang, S.W.S.; Cogger, V.C.; Le Couteur, D.G.; Fu, D. Multiple cellular pathways regulate lipid droplet homeostasis for the establishment of polarity in collagen sandwich-cultured hepatocytes. Am. J. Physiol. Cell Physiol., 2019, 317(5), C942-C952.
[http://dx.doi.org/10.1152/ajpcell.00051.2019] [PMID: 31411916]
[186]
Stoffel, W.; Binczek, E.; Schmidt-Soltau, I.; Brodesser, S.; Wegner, I. High fat / high cholesterol diet does not provoke atherosclerosis in the ω3-and ω6-polyunsaturated fatty acid synthesis–inactivated Δ6-fatty acid desaturase–deficient mouse. Mol. Metab., 2021, 54, 101335.
[http://dx.doi.org/10.1016/j.molmet.2021.101335] [PMID: 34530175]
[187]
Nomura, M.; Liu, J.; Yu, Z.X.; Yamazaki, T.; Yan, Y.; Kawagishi, H.; Rovira, I.I.; Liu, C.; Wolfgang, M.J.; Mukouyama, Y.; Finkel, T. Macrophage fatty acid oxidation inhibits atherosclerosis progression. J. Mol. Cell. Cardiol., 2019, 127, 270-276.
[http://dx.doi.org/10.1016/j.yjmcc.2019.01.003] [PMID: 30639412]
[188]
Kwon, S.Y.; Massey, K.; Watson, M.A.; Hussain, T.; Volpe, G.; Buckley, C.D.; Nicolaou, A.; Badenhorst, P. Oxidised metabolites of the omega-6 fatty acid linoleic acid activate dFOXO. Life Sci. Alliance, 2020, 3(2), e201900356.
[http://dx.doi.org/10.26508/lsa.201900356] [PMID: 31992650]
[189]
Hammels, I.; Binczek, E.; Schmidt-Soltau, I.; Jenke, B.; Thomas, A.; Vogel, M.; Thevis, M.; Filipova, D.; Papadopoulos, S.; Stoffel, W. Novel CB1-ligands maintain homeostasis of the endocannabinoid system in ω3- and ω6-long-chain-PUFA deficiency. J. Lipid Res., 2019, 60(8), 1396-1409.
[http://dx.doi.org/10.1194/jlr.M094664] [PMID: 31167809]
[190]
Repossi, G.; Dain, A.; Eynard, A.R. Dietary manipulations of polyunsaturated fatty acids, the precursors of endocannabinoids, and its implications in human health and disease. Curr. Nutr. Food Sci., 2009, 5(2), 112-125.
[http://dx.doi.org/10.2174/157340109788185571]
[191]
Repossi, G.; Pasqualini, M.E.; Das, U.N.; Eynard, A.R. Polyunsaturated fatty acids differentially modulate cell proliferation and endocannabinoid system in two human cancer lines. Arch. Med. Res., 2017, 48(1), 46-54.
[http://dx.doi.org/10.1016/j.arcmed.2017.01.009] [PMID: 28577869]
[192]
Keyes, G.S.; Maiden, K.; Ramsden, C.E. Stable analogs of 13-hydroxy-9,10-trans-epoxy-(11E)-octadecenoate (13,9-HEL), an oxidized derivative of linoleic acid implicated in the epidermal skin barrier. Prostaglandins Leukot. Essent. Fatty Acids, 2021, 174, 102357.
[http://dx.doi.org/10.1016/j.plefa.2021.102357] [PMID: 34749189]
[193]
Olona, A.; Terra, X.; Ko, J.H.; Grau-Bové, C.; Pinent, M.; Ardevol, A.; Diaz, A.G.; Moreno-Moral, A.; Edin, M.; Bishop-Bailey, D.; Zeldin, D.C.; Aitman, T.J.; Petretto, E.; Blay, M.; Behmoaras, J. Epoxygenase inactivation exacerbates diet and aging-associated metabolic dysfunction resulting from impaired adipogenesis. Mol. Metab., 2018, 11, 18-32.
[http://dx.doi.org/10.1016/j.molmet.2018.03.003] [PMID: 29656108]
[194]
Bove, R.M.; Patrick, E.; Aubin, C.M.; Srivastava, G.; Schneider, J.A.; Bennett, D.A.; De Jager, P.L.; Chibnik, L.B. Reproductive period and epigenetic modifications of the oxidative phosphorylation pathway in the human prefrontal cortex. PLoS One, 2018, 13(7), e0199073.
[http://dx.doi.org/10.1371/journal.pone.0199073] [PMID: 30052629]
[195]
Calderón, R.O.; Eynard, A.R. Fatty acids specifically related to the anisotropic properties of plasma membrane from rat urothelium. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2000, 1483(1), 174-184.
[http://dx.doi.org/10.1016/S1388-1981(99)00173-0] [PMID: 10601706]
[196]
Sasaki, H.; Sueyasu, T.; Tokuda, H.; Ito, M.; Kaneda, Y.; Rogi, T.; Kawashima, H.; Horiguchi, S.; Kawabata, T.; Shibata, H. Aging and FADS1 polymorphisms decrease the biosynthetic capacity of long-chain PUFAs: A human trial using [U-13C]linoleic acid. Prostaglandins Leukot. Essent. Fatty Acids, 2019, 148, 1-8.
[http://dx.doi.org/10.1016/j.plefa.2019.07.003] [PMID: 31492428]
[197]
Pearsall, E.A.; Cheng, R.; Zhou, K.; Takahashi, Y.; Matlock, H.G.; Vadvalkar, S.S.; Shin, Y.; Fredrick, T.W.; Gantner, M.L.; Meng, S.; Fu, Z.; Gong, Y.; Kinter, M.; Humphries, K.M.; Szweda, L.I.; Smith, L.E.H.; Ma, J. PPARα is essential for retinal lipid metabolism and neuronal survival. BMC Biol., 2017, 15(1), 113.
[http://dx.doi.org/10.1186/s12915-017-0451-x] [PMID: 29183319]
[198]
Iershov, A.; Nemazanyy, I.; Alkhoury, C.; Girard, M.; Barth, E.; Cagnard, N.; Montagner, A.; Chretien, D.; Rugarli, E.I.; Guillou, H.; Pende, M.; Panasyuk, G. The class 3 PI3K coordinates autophagy and mitochondrial lipid catabolism by controlling nuclear receptor PPARα. Nat. Commun., 2019, 10(1), 1566.
[http://dx.doi.org/10.1038/s41467-019-09598-9] [PMID: 30952952]
[199]
Schütter, M.; Giavalisco, P.; Brodesser, S.; Graef, M. Local fatty acid channeling into phospholipid synthesis drives phagophore expansion during autophagy. Cell, 2020, 180(1), 135-149.e14.
[http://dx.doi.org/10.1016/j.cell.2019.12.005] [PMID: 31883797]
[200]
So, W.K.; Kim, H.K.; Chen, Y.; Jeong, S.H.; Yeung, P.K.K.; Chow, B.C.K.; Han, J.; Chung, S.K. Exchange protein directly activated by cAMP (Epac) 1 plays an essential role in stress-induced exercise capacity by regulating PGC-1α and fatty acid metabolism in skeletal muscle. Pflugers Arch., 2020, 472(2), 195-216.
[http://dx.doi.org/10.1007/s00424-019-02344-6] [PMID: 31955265]
[201]
Morigny, P.; Boucher, J.; Arner, P.; Langin, D. Lipid and glucose metabolism in white adipocytes: Pathways, dysfunction and therapeutics. Nat. Rev. Endocrinol., 2021, 17(5), 276-295.
[http://dx.doi.org/10.1038/s41574-021-00471-8] [PMID: 33627836]
[202]
Petrus, P.; Edholm, D.; Rosqvist, F.; Dahlman, I.; Sundbom, M.; Arner, P.; Rydén, M.; Risérus, U. Depot-specific differences in fatty acid composition and distinct associations with lipogenic gene expression in abdominal adipose tissue of obese women. Int. J. Obes., 2017, 41(8), 1295-1298.
[http://dx.doi.org/10.1038/ijo.2017.106] [PMID: 28465608]
[203]
Camargo, T.F.; Zanesco, A.M.; Pacher, K.A.S.; Andrade, T.A.M.; Alves, A.A.; do Amaral, M.E.C. Physiological profile regulation during weight gain and loss by ovariectomized females: importance of SIRT1 and SIRT4. Am. J. Physiol. Endocrinol. Metab., 2020, 319(4), E769-E778.
[http://dx.doi.org/10.1152/ajpendo.00465.2019] [PMID: 32865007]
[204]
Ando, Y.; Saito, S.; Miura, H.; Osaki, N.; Katsuragi, Y. Consumption of alpha-linolenic acid-enriched diacylglycerol induces increase in dietary fat oxidation compared with alpha-linolenic acid-enriched triacylglycerol: A randomized, double-blind trial. Nutr. Res., 2017, 48, 85-92.
[http://dx.doi.org/10.1016/j.nutres.2017.10.012] [PMID: 29246284]
[205]
Park, C.; Choi, J.E.; Jin, Y.; Park, Y. Eicosapentaenoic acid and docosahexaenoic acid, but not α-linolenic acid, decreased low-density lipoprotein cholesterol synergistically with estrogen via regulation of cholesterol synthesis and clearance in ovariectomized rats. Nutr. Res., 2019, 66, 13-21.
[http://dx.doi.org/10.1016/j.nutres.2019.03.003] [PMID: 31051318]
[206]
Burdge, G.C. Is essential fatty acid interconversion an important source of PUFA in humans? Br. J. Nutr., 2019, 121(6), 615-624.
[http://dx.doi.org/10.1017/S0007114518003707] [PMID: 30588897]
[207]
Wierzejska, R.; Jarosz, M.; Wojda, B.; Siuba-Strzelińska, M. Dietary intake of DHA during pregnancy: A significant gap between the actual intake and current nutritional recommendations. Rocz. Panstw. Zakl. Hig., 2018, 69(4), 381-386.
[http://dx.doi.org/10.32394/rpzh.2018.0044] [PMID: 30525329]
[208]
Bélanger, A.; Sarker, P.K.; Bureau, D.P.; Chouinard, Y.; Vandenberg, G.W. Apparent digestibility of macronutrients and fatty acids from microalgae (Schizochytrium sp.) fed to rainbow trout (Oncorhynchus mykiss): A potential candidate for fish oil substitution. Animals, 2021, 11(2), 456.
[http://dx.doi.org/10.3390/ani11020456] [PMID: 33572470]
[209]
Ursinyova, M.; Masanova, V.; Uhnakova, I.; Murinova, L.P.; Patayova, H.; Rausova, K.; Trnovec, T.; Stencl, J.; Gajdos, M. Prenatal and early postnatal exposure to total mercury and methylmercury from low maternal fish consumption. Biol. Trace Elem. Res., 2019, 191(1), 16-26.
[http://dx.doi.org/10.1007/s12011-018-1585-6] [PMID: 30499063]
[210]
Walker, C.G.; Browning, L.M.; Mander, A.P.; Madden, J.; West, A.L.; Calder, P.C.; Jebb, S.A. Age and sex differences in the incorporation of EPA and DHA into plasma fractions, cells and adipose tissue in humans. Br. J. Nutr., 2014, 111(4), 679-689.
[http://dx.doi.org/10.1017/S0007114513002985] [PMID: 24063767]
[211]
Vara-Messler, M.; Pasqualini, M.E.; Comba, A.; Silva, R.; Buccellati, C.; Trenti, A.; Trevisi, L.; Eynard, A.R.; Sala, A.; Bolego, C.; Valentich, M.A. Increased dietary levels of α-linoleic acid inhibit mammary tumor growth and metastasis. Eur. J. Nutr., 2017, 56(2), 509-519.
[http://dx.doi.org/10.1007/s00394-015-1096-6] [PMID: 26582578]
[212]
Greupner, T.; Koch, E.; Kutzner, L.; Hahn, A.; Schebb, N.H.; Schuchardt, J.P. Single-dose SDA-rich echium oil increases plasma EPA, DPAn3, and DHA concentrations. Nutrients, 2019, 11(10), 2346.
[http://dx.doi.org/10.3390/nu11102346] [PMID: 31581725]
[213]
Kuhnt, K.; Weiß, S.; Kiehntopf, M.; Jahreis, G. Consumption of echium oil increases EPA and DPA in blood fractions more efficiently compared to linseed oil in humans. Lipids Health Dis., 2016, 15(1), 32.
[http://dx.doi.org/10.1186/s12944-016-0199-2] [PMID: 26892399]
[214]
Bandarra, N.M.; Marçalo, A.; Cordeiro, A.R.; Pousão-Ferreira, P. Sardine (Sardina pilchardus) lipid composition: Does it change after one year in captivity? Food Chem., 2018, 244, 408-413.
[http://dx.doi.org/10.1016/j.foodchem.2017.09.147] [PMID: 29120801]
[215]
Prasad, P.; Anjali, P.; Sreedhar, R.V. Plant-based stearidonic acid as sustainable source of omega-3 fatty acid with functional outcomes on human health. Crit. Rev. Food Sci. Nutr., 2021, 61(10), 1725-1737.
[http://dx.doi.org/10.1080/10408398.2020.1765137] [PMID: 32431176]
[216]
Santos-Merino, M.; Gutiérrez-Lanza, R.; Nogales, J.; García, J.L.; de la Cruz, F. Synechococcus elongatus PCC 7942 as a platform for bioproduction of omega-3 fatty acids. Life, 2022, 12(6), 810.
[http://dx.doi.org/10.3390/life12060810] [PMID: 35743841]
[217]
Li, Y.; Rong, Y.; Bao, L.; Nie, B.; Ren, G.; Zheng, C.; Amin, R.; Arnold, R.D.; Jeganathan, R.B.; Huggins, K.W. Suppression of adipocyte differentiation and lipid accumulation by stearidonic acid (SDA) in 3T3-L1 cells. Lipids Health Dis., 2017, 16(1), 181.
[http://dx.doi.org/10.1186/s12944-017-0574-7] [PMID: 28946872]
[218]
Lefort, N.; LeBlanc, R.; Surette, M. Dietary Buglossoides arvensis oil increases circulating n-3 polyunsaturated fatty acids in a dose-dependent manner and enhances lipopolysaccharide-stimulated whole blood interleukin-10-a randomized placebo-controlled trial. Nutrients, 2017, 9(3), 261.
[http://dx.doi.org/10.3390/nu9030261] [PMID: 28287415]
[219]
Kuhnt, K.; Fuhrmann, C.; Köhler, M.; Kiehntopf, M.; Jahreis, G. Dietary echium oil increases long-chain n-3 PUFAs, including docosapentaenoic acid, in blood fractions and alters biochemical markers for cardiovascular disease independently of age, sex, and metabolic syndrome. J. Nutr., 2014, 144(4), 447-460.
[http://dx.doi.org/10.3945/jn.113.180802] [PMID: 24553695]
[220]
Botelho, P.B.; Mariano, K.R.; Rogero, M.M.; de Castro, I.A. Effect of Echium oil compared with marine oils on lipid profile and inhibition of hepatic steatosis in LDLr knockout mice. Lipids Health Dis., 2013, 12(1), 38.
[http://dx.doi.org/10.1186/1476-511X-12-38] [PMID: 23510369]
[221]
Hong, L.; Zahradka, P.; Cordero-Monroy, L.; Wright, B.; Taylor, C.G. Dietary docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) operate by different mechanisms to modulate hepatic steatosis and hyperinsulemia in fa/fa Zucker rats. Nutrients, 2019, 11(4), 917.
[http://dx.doi.org/10.3390/nu11040917] [PMID: 31022865]
[222]
Petrine, J.C.P.; Del Bianco-Borges, B. The influence of phytoestrogens on different physiological and pathological processes: An overview. Phytother. Res., 2021, 35(1), 180-197.
[http://dx.doi.org/10.1002/ptr.6816] [PMID: 32780464]
[223]
Sridevi, V.; Naveen, P.; Karnam, V.S.; Reddy, P.R.; Arifullah, M. Beneficiary and adverse effects of phytoestrogens: A potential constituent of plant-based diet. Curr. Pharm. Des., 2021, 27(6), 802-815.
[http://dx.doi.org/10.2174/18734286MTEw0MDMz4] [PMID: 32942973]
[224]
Liu, H.; He, S.; Wang, T.; Orang-Ojong, B.; Lu, Q.; Zhang, Z.; Pan, L.; Chai, X.; Wu, H.; Fan, G.; Zhang, P.; Feng, Y.; Song, Y.S.; Gao, X.; Karas, R.H.; Zhu, Y. Selected phytoestrogens distinguish roles of ERα transactivation and ligand binding for anti-inflammatory activity. Endocrinology, 2018, 159(9), 3351-3364.
[http://dx.doi.org/10.1210/en.2018-00275] [PMID: 30010822]
[225]
Gan, M.; Shen, L.; Wang, S.; Guo, Z.; Zheng, T.; Tan, Y.; Fan, Y.; Liu, L.; Chen, L.; Jiang, A.; Li, X.; Zhang, S.; Zhu, L. Genistein inhibits high fat diet-induced obesity through miR-222 by targeting BTG2 and adipor1. Food Funct., 2020, 11(3), 2418-2426.
[http://dx.doi.org/10.1039/C9FO00861F] [PMID: 32129363]
[226]
Xiong, J.; Cai, X.; Zhang, Z.; Li, Q.; Zhou, Q.; Wang, Z. Elucidating the estrogen-like effects and biocompatibility of the herbal components in the Qing’ E formula. J. Ethnopharmacol., 2022, 283, 114735.
[http://dx.doi.org/10.1016/j.jep.2021.114735] [PMID: 34637969]
[227]
Zhou, L.; Xiao, X.; Zhang, Q.; Zheng, J.; Li, M.; Wang, X.; Deng, M.; Zhai, X.; Liu, J. Gut microbiota might be a crucial factor in deciphering the metabolic benefits of perinatal genistein consumption in dams and adult female offspring. Food Funct., 2019, 10(8), 4505-4521.
[http://dx.doi.org/10.1039/C9FO01046G] [PMID: 31348478]
[228]
Shabani, M.; Rezaei, A.; Badehnoosh, B.; Qorbani, M.; Yaseri, M.; Ramezani, R.; Emaminia, F. The effects of Elaeagnus angustifolia L. on lipid and glycaemic profiles and cardiovascular function in menopausal women: A double-blind, randomized, placebo-controlled study. Int. J. Clin. Pract., 2021, 75(4), e13812.
[http://dx.doi.org/10.1111/ijcp.13812] [PMID: 33145864]
[229]
Yi, X.Y.; Wang, Z.H.; Wang, Y. Genistein for glycolipid metabolism in postmenopausal women: A meta-analysis. Climacteric, 2021, 24(3), 267-274.
[http://dx.doi.org/10.1080/13697137.2020.1859473] [PMID: 33410719]
[230]
Usategui-Martín, R.; Pérez-Alonso, M.; Socorro-Briongos, L.; Ruiz-Mambrilla, M.; De Luis, D.; Linares, L.; Calero-Paniagua, I.; Dueñas-Laita, A.; Pérez-Castrillón, J.L. Estrogen receptor genes polymorphisms determine serum lipid profile in healthy postmenopausal women treated with calcium, vitamin D, and genistein. J Cell Biochem, 2021, 120(8), 13115-13120.
[http://dx.doi.org/10.1002/jcb.28584]
[231]
Ye, Y.B.; He, K.Y.; Li, W.L.; Zhuo, S.Y.; Chen, Y.M.; Lu, W.; Liu, J.; Li, Y.B.; Zeng, F.F. Effects of daidzein and genistein on markers of cardiovascular disease risk among women with impaired glucose regulation: A double-blind, randomized, placebo-controlled trial. Food Funct., 2021, 12, 12, 7997-8006.
[http://dx.doi.org/10.1002/jcb.28584]
[232]
Trius-Soler, M.; Marhuenda-Muñoz, M.; Laveriano-Santos, E.P.; Martínez-Huélamo, M.; Sasot, G.; Storniolo, C.E.; Estruch, R.; Lamuela-Raventós, R.M.; Tresserra-Rimbau, A. moderate consumption of beer (with and without ethanol) and menopausal symptoms: results from a parallel clinical trial in postmenopausal women. Nutrients, 2021, 13(7), 2278.
[http://dx.doi.org/10.3390/nu13072278] [PMID: 34209273]
[233]
Brotzu, G.; Fadda, A.M.; Manca, M.L.; Manca, T.; Marongiu, F.; Campisi, M.; Consolaro, F. A liposome-based formulation containing equol, dihomo-γ-linolenic acid and propionyl- L -carnitine to prevent and treat hair loss: A prospective investigation. Dermatol. Ther., 2019, 32(1), e12778.
[http://dx.doi.org/10.1111/dth.12778] [PMID: 30371981]
[234]
Kiyama, R. Nutritional implications of ginger: Chemistry, biological activities and signaling pathways. J. Nutr. Biochem., 2020, 86, 108486.
[http://dx.doi.org/10.1016/j.jnutbio.2020.108486] [PMID: 32827666]
[235]
Kiyama, R.; Zhu, Y. DNA microarray-based gene expression profiling of estrogenic chemicals. Cell. Mol. Life Sci., 2014, 71(11), 2065-2082.
[http://dx.doi.org/10.1007/s00018-013-1544-5] [PMID: 24399289]
[236]
Soria, E.A.; Eynard, A.R.; Quiroga, P.L.; Bongiovanni, G.A. Differential effects of quercetin and silymarin on arsenite-induced cytotoxicity in two human breast adenocarcinoma cell lines. Life Sci., 2007, 81(17-18), 1397-1402.
[http://dx.doi.org/10.1016/j.lfs.2007.09.008] [PMID: 17931660]
[237]
Soria, E.A.; Bongiovanni, G.A.; Díaz Luján, C.; Eynard, A.R. Effect of arsenite on nitrosative stress in human breast cancer cells and its modulation by flavonoids. Nutr. Cancer, 2015, 67(4), 659-663.
[http://dx.doi.org/10.1080/01635581.2015.1019637] [PMID: 25849845]
[238]
Quiroga, A.; Quiroga, P.L.; Martínez, E.; Soria, E.A.; Valentich, M.A. Anti-breast cancer activity of curcumin on the human oxidation-resistant cells ZR-75-1 with gamma-glutamyltranspeptidase inhibition. J. Exp. Ther. Oncol., 2010, 8(3), 261-266.
[PMID: 20734924]
[239]
Defagó, M.D.; Soria, E.A. Biomarker assessment in nutritional modulation of oxidative stress-induced cancer development by lipid-related bioactive molecules. Recent Patents Anticancer Drug Discov., 2010, 5(3), 188-196.
[http://dx.doi.org/10.2174/157489210791760481] [PMID: 20594184]
[240]
Quiroga, P.L.; Soria, E.A.; Valentich, M.A.; Eynard, A.R. Differential potentiation of retinoic acid effects against human breast cancer cells by unsaturated fatty acids. Nutr. Cancer, 2018, 70(7), 1137-1144.
[http://dx.doi.org/10.1080/01635581.2018.1497669] [PMID: 30216095]
[241]
Quiroga, P.; Eynard, A.; Soria, E.; Valentich, M. Interaction between retinoids and eicosanoids: Their relevance to cancer chemoprevention. Curr. Nutr. Food Sci., 2009, 5(2), 126-133.
[http://dx.doi.org/10.2174/157340109788185553]
[242]
Navarro, A.; Osella, A.R.; Muñoz, S.E.; Lantieri, M.J.; Fabro, E.A.; Eynard, A.R. Fatty acids, fibres and colorectal cancer risk in Córdoba, Argentina. J. Epidemiol. Biostat., 1998, 3, 415-422.
[243]
Andreatta, M.M.; Navarro, A.; Muñoz, S.E.; Aballay, L.; Eynard, A.R. Dietary patterns and food groups are linked to the risk of urinary tract tumors in Argentina. Eur. J. Cancer Prev., 2010, 19(6), 478-484.
[http://dx.doi.org/10.1097/CEJ.0b013e32833ebab6] [PMID: 20736839]
[244]
Pou, S.A.; Niclis, C.; Eynard, A.R.; Díaz, M.P. Dietary patterns and risk of urinary tract tumors: A multilevel analysis of individuals in rural and urban contexts. Eur. J. Nutr., 2014, 53(5), 1247-1253.
[http://dx.doi.org/10.1007/s00394-013-0627-2] [PMID: 24292744]
[245]
Defagó, M.D.; Elorriaga, N.; Eynard, A.R.; Poggio, R.; Gutiérrez, L.; Irazola, V.E.; Rubinstein, A.L. Associations between major dietary patterns and biomarkers of endothelial dysfunction in two urban midsized cities in Argentina. Nutrition, 2019, 67-68, 110521.
[http://dx.doi.org/10.1016/j.nut.2019.06.002] [PMID: 31446214]
[246]
Draper, C.F.; Duisters, K.; Weger, B.; Chakrabarti, A.; Harms, A.C.; Brennan, L.; Hankemeier, T.; Goulet, L.; Konz, T.; Martin, F.P.; Moco, S.; van der Greef, J. Menstrual cycle rhythmicity: Metabolic patterns in healthy women. Sci. Rep., 2018, 8(1), 14568.
[http://dx.doi.org/10.1038/s41598-018-32647-0] [PMID: 30275458]
[247]
Wohlgemuth, K.J.; Arieta, L.R.; Brewer, G.J.; Hoselton, A.L.; Gould, L.M.; Smith-Ryan, A.E. Sex differences and considerations for female specific nutritional strategies: A narrative review. J. Int. Soc. Sports Nutr., 2021, 18(1), 27.
[http://dx.doi.org/10.1186/s12970-021-00422-8] [PMID: 33794937]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy