Medicinal Plant-derived Phytochemicals in Detoxification | Bentham Science
Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Medicinal Plant-derived Phytochemicals in Detoxification

Author(s): Geir Bjørklund*, Natália Cruz-Martins, Bey Hing Goh, Olha Mykhailenko, Roman Lysiuk, Mariia Shanaida, Larysa Lenchyk, Taras Upyr, Marius Emil Rusu, Antonina Pryshlyak, Volodymyr Shanaida and Salvatore Chirumbolo

Volume 30, Issue 13, 2024

Published on: 12 September, 2023

Page: [988 - 1015] Pages: 28

DOI: 10.2174/1381612829666230809094242

Price: $65

Open Access Journals Promotions 2
Abstract

The average worldwide human life expectancy is 70 years, with a significantly higher value in Western societies. Many modern diseases are not associated with premature mortality but with a decreased quality of life in aged patients and an excessive accumulation of various toxic compounds in the human body during life. Today, scientists are especially interested in finding compounds that can help increase a healthy lifespan by detoxifying the body. Phytotherapy with specific approaches is used in alternative medicine to remove toxins from the body. Worldwide, research is conducted to identify medicinal plant-derived molecules that, with few or no side effects, may protect the liver and other organs. This review provides updated information about the detoxification process, the traditional and modern use of the most effective medicinal plants, their active metabolites as detoxifying agents, and the mechanisms and pathways involved in the detoxification process. Among medicinal plants with substantial detoxifying properties, a major part belongs to the Asteraceae family (Silybum marianum, Cynara scolymus, Arctium lappa, Helichrysum species, Inula helenium, and Taraxacum officinale). The most widely used hepatoprotective phytocomponent is silymarin, a standardized extract from the Silybum marianum seeds containing a mixture of flavonolignans. Many polysaccharides, polyphenols, and terpenoids have a detoxifying effect. Overall, scientific data on medicinal plants used in phytotherapeutic practice worldwide provides an understanding and awareness of their efficacy in detoxification.

Keywords: Medicinal plants, bioactive natural compounds, phytotherapy, detoxifying agents, hepatoprotection, mechanisms of action.

[1]
Eleawa SM, Alkhateeb MA, Alhashem FH, et al. Resveratrol reverses cadmium chloride-induced testicular damage and subfertility by downregulating p53 and Bax and upregulating gonadotropins and Bcl-2 gene expression. J Reprod Dev 2014; 60(2): 115-27.
[http://dx.doi.org/10.1262/jrd.2013-097] [PMID: 24492640]
[2]
Zellner T, Prasa D, Färber E, Hoffmann-Walbeck P, Genser D, Eyer F. The use of activated charcoal to treat intoxications. Dtsch Arztebl Int 2019; 116(18): 311-7.
[http://dx.doi.org/10.3238/arztebl.2019.0311] [PMID: 31219028]
[3]
Thilagavathi R, Begum SS, Varatharaj SD, Balasubramaniam A, George JS, Selvam C. Recent insights into the hepatoprotective potential of medicinal plants and plant-derived compounds. Phytother Res 2023; 37(5): 2102-18.
[http://dx.doi.org/10.1002/ptr.7821] [PMID: 37022281]
[4]
Bridi R, Poser G, Meirelles G. Iridoids as a potential hepatoprotective class: A review. Mini Rev Med Chem 2022; 23(4): 452-79.
[PMID: 35975865]
[5]
Sun W, Yan B, Wang R, et al. In vivo acute toxicity of detoxified Fuzi (lateral root of Aconitum carmichaeli) after a traditional detoxification process. EXCLI J 2018; 17: 889-99.
[PMID: 30564068]
[6]
Wang X, Yan Y, Zhang A, et al. Toxicity and detoxification effects of herbal Caowu via ultra performance liquid chromatography/mass spectrometry metabolomics analyzed using pattern recognition method. Pharmacogn Mag 2017; 13(52): 683-92.
[http://dx.doi.org/10.4103/pm.pm_475_16] [PMID: 29200734]
[7]
Ajanaku CO, Ademosun OT, Atohengbe PO, et al. Functional bioactive compounds in ginger, turmeric, and garlic. Front Nutr 2022; 9: 1012023.
[http://dx.doi.org/10.3389/fnut.2022.1012023] [PMID: 36570131]
[8]
Seeff L, Lindsay KL, Bacon BR, Kresina TF, Hoofnagle JH. Complementary and alternative medicine in chronic liver disease. Hepatology 2001; 34(3): 595-603.
[http://dx.doi.org/10.1053/jhep.2001.27445] [PMID: 11526548]
[9]
Bhattacharya S. Medicinal plants and natural products in amelioration of arsenic toxicity: A short review. Pharm Biol 2017; 55(1): 349-54.
[http://dx.doi.org/10.1080/13880209.2016.1235207] [PMID: 27931138]
[10]
Mehrandish R, Rahimian A, Shahriary A. Heavy metals detoxification: A review of herbal compounds for chelation therapy in heavy metals toxicity. J HerbMed Pharmacol 2019; 8(2): 69-77.
[http://dx.doi.org/10.15171/jhp.2019.12]
[11]
Eliaz I, Hotchkiss AT, Fishman ML, Rode D. The effect of modified citrus pectin on urinary excretion of toxic elements. Phytother Res 2006; 20(10): 859-64.
[http://dx.doi.org/10.1002/ptr.1953] [PMID: 16835878]
[12]
Eivazzadeh-Keihan R, Noruzi EB, Aliabadi HAM, et al. Recent advances on biomedical applications of pectin-containing biomaterials. Int J Biol Macromol 2022; 217: 1-18.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.07.016] [PMID: 35809676]
[13]
Houston MC. The role of mercury and cadmium heavy metals in vascular disease, hypertension, coronary heart disease, and myocardial infarction. Altern Ther Health Med 2007; 13(2): S128-33.
[PMID: 17405690]
[14]
Davis TA, Volesky B, Mucci A. A review of the biochemistry of heavy metal biosorption by brown algae. Water Res 2003; 37(18): 4311-30.
[http://dx.doi.org/10.1016/S0043-1354(03)00293-8] [PMID: 14511701]
[15]
Eliaz I, Weil E, Wilk B. Integrative medicine and the role of modified citrus pectin/alginates in heavy metal chelation and detoxification-five case reports. Forsch Komplement Med 2007; 14(6): 358-64.
[PMID: 18219211]
[16]
Bjørklund G, Rahaman MS, Shanaida M, et al. Natural dietary compounds in the treatment of arsenic toxicity. Molecules 2022; 27(15): 4871.
[http://dx.doi.org/10.3390/molecules27154871] [PMID: 35956821]
[17]
Xie JH, Jin ML, Morris GA, et al. Advances on bioactive polysaccharides from medicinal plants. Crit Rev Food Sci Nutr 2016; 56(Suppl. 1): S60-84.
[http://dx.doi.org/10.1080/10408398.2015.1069255] [PMID: 26463231]
[18]
Gasmi A, Shanaida M, Oleshchuk O, et al. Natural ingredients to improve immunity. Pharmaceuticals 2023; 16(4): 528.
[http://dx.doi.org/10.3390/ph16040528] [PMID: 37111285]
[19]
Shinkovenko IL, Kashpur NV, Ilyina TV, et al. The immunomodulatory activity of the extracts and complexes of biologically active compounds of Galium verum L. herb. Ceska Slov Farm 2018; 67(1): 25-9.
[PMID: 30157664]
[20]
Li Y, Zheng Y, Zhang Y, et al. Brown algae carbohydrates: Structures, pharmaceutical properties, and research challenges. Mar Drugs 2021; 19(11): 620.
[http://dx.doi.org/10.3390/md19110620] [PMID: 34822491]
[21]
Cao P, Wu S, Wu T, et al. The important role of polysaccharides from a traditional Chinese medicine-lung cleansing and detoxifying decoction against the COVID-19 pandemic. Carbohydr Polym 2020; 240: 116346.
[http://dx.doi.org/10.1016/j.carbpol.2020.116346] [PMID: 32475597]
[22]
Du M, Cheng X, Qian L, Huo A, Chen J, Sun Y. Extraction, physicochemical properties, functional activities and applications of inulin polysaccharide: A review. Plant Foods Hum Nutr 2023; 78(12): 243-52.
[http://dx.doi.org/10.1007/s11130-023-01066-6] [PMID: 37097509]
[23]
Chen YX, Lin Q, Luo YM, et al. The role of citric acid on the phytoremediation of heavy metal contaminated soil. Chemosphere 2003; 50(6): 807-11.
[http://dx.doi.org/10.1016/S0045-6535(02)00223-0] [PMID: 12688495]
[24]
Ma JF. Role of organic acids in detoxification of aluminum in higher plants. Plant Cell Physiol 2000; 41(4): 383-90.
[http://dx.doi.org/10.1093/pcp/41.4.383] [PMID: 10845450]
[25]
Shanaida M, Pryshlyak A, Golembiovska O. Determination of triterpenoids in some Lamiaceae species. Res J Pharm Technol 2018; 11(7): 3113-8.
[http://dx.doi.org/10.5958/0974-360X.2018.00571.1]
[26]
Majee C, Mazumder R, Salahuddin S. An insight into the hepatoprotective activity and structure-activity relationships of flavonoids. Mini Rev Med Chem 2022; 2022: 22.
[PMID: 35657045]
[27]
Shanaida M. Comparative analysis of phenolic compounds in the american basil and wild bergamot herbs. Pharmacologyonline 2021; 2: 943-52.
[28]
Gasmi A, Mujawdiya PK, Lysiuk R, et al. Quercetin in the prevention and treatment of coronavirus infections: A focus on SARS- CoV-2. Pharmaceuticals 2022; 15(9): 1049.
[http://dx.doi.org/10.3390/ph15091049] [PMID: 36145270]
[29]
Lee S, Lee J, Lee H, Sung J. Relative protective activities of quercetin, quercetin-3-glucoside, and rutin in alcohol-induced liver injury. J Food Biochem 2019; 43(11): e13002.
[http://dx.doi.org/10.1111/jfbc.13002] [PMID: 31378953]
[30]
Miltonprabu S, Tomczyk M, Skalicka-Wozniak K, et al. Hepatoprotective effect of quercetin: From chemistry to medicine. Food Chem Toxicol 2017; 108(Pt B): 365-74.
[31]
Saricaoglu B, Gültekin Subaşı B, Karbancioglu-Guler F, Lorenzo JM, Capanoglu E. Phenolic compounds as natural microbial toxin detoxifying agents. Toxicon 2023; 222: 106989.
[http://dx.doi.org/10.1016/j.toxicon.2022.106989] [PMID: 36509264]
[32]
Vladimir-Knežević S, Blažeković B, Kindl M, Vladić J, Lower-Nedza A, Brantner A. Acetylcholinesterase inhibitory, antioxidant and phytochemical properties of selected medicinal plants of the Lamiaceae family. Molecules 2014; 19(1): 767-82.
[http://dx.doi.org/10.3390/molecules19010767] [PMID: 24413832]
[33]
Sarma H. Transgenic Plant Technology for Remediation of Toxic Metals and Metalloids. Amsterdam: Elsevier 2019; pp. 299-318.
[http://dx.doi.org/10.1016/B978-0-12-814389-6.00014-6]
[34]
Moradi M-T, Asadi-Samani M, Bahmani M, Shahrani M. Medicinal plants used for liver disorders based on the Ethnobotanical documents of Iran: A review. Int J Pharm Tech Res 2016; 9(5): 407-15.
[35]
Madrigal-Santillán E, Madrigal-Bujaidar E, Álvarez-González I, et al. Review of natural products with hepatoprotective effects. World J Gastroenterol 2014; 20(40): 14787-804.
[http://dx.doi.org/10.3748/wjg.v20.i40.14787] [PMID: 25356040]
[36]
Bjørklund G, Shanaida M, Lysiuk R, et al. Natural compounds and products from an anti-aging perspective. Molecules 2022; 27(20): 7084.
[http://dx.doi.org/10.3390/molecules27207084] [PMID: 36296673]
[37]
Gasmi A, Mujawdiya PK, Noor S, et al. Polyphenols in metabolic diseases. Molecules 2022; 27(19): 6280.
[http://dx.doi.org/10.3390/molecules27196280] [PMID: 36234817]
[38]
Gons’kyĭ IaI, Korda MM, Klishch IM. Status of the free radical oxidation and antioxidant system in rats with toxic liver damage; effect of tocopherol and dimethylsulfoxide. Ukr Biokhim Zh 1991; 63(5): 112-6.
[PMID: 1788866]
[39]
Koshovyi O, Granica S, Piwowarski JP, et al. Highbush blueberry (Vaccinium corymbosum L.) leaves extract and its modified arginine preparation for the management of metabolic syndrome- chemical analysis and bioactivity in rat model. Nutrients 2021; 13(8): 2870.
[http://dx.doi.org/10.3390/nu13082870] [PMID: 34445028]
[40]
Skakun NP, Stepanova YN. Comparative evaluation of the hepatoprotective, antioxidant and choleretic activity of flavonoid drugs. Vrach Delo 1988; 12: 52-4.
[PMID: 3245169]
[41]
Yousefsani BS, Mehri S, Pourahmad J, Hosseinzadeh H. Crocin prevents sub-cellular organelle damage, proteolysis and apoptosis in rat hepatocytes: A justification for its hepatoprotection. Iran J Pharm Res 2018; 17(2): 553-62.
[PMID: 29881413]
[42]
Maliakal PP, Wanwimolruk S. Effect of herbal teas on hepatic drug metabolizing enzymes in rats. J Pharm Pharmacol 2010; 53(10): 1323-9.
[http://dx.doi.org/10.1211/0022357011777819] [PMID: 11697539]
[43]
Lee MY, Yuk JE, Kwon OK, et al. Anti-inflammatory and anti-asthmatic effects of Viola mandshurica W. Becker (VM) ethanolic (EtOH) extract on airway inflammation in a mouse model of allergic asthma. J Ethnopharmacol 2010; 127(1): 159-64.
[http://dx.doi.org/10.1016/j.jep.2009.09.033] [PMID: 19786084]
[44]
Bellik Y, Boukraâ L, Alzahrani H, et al. Molecular mechanism underlying anti-inflammatory and anti-allergic activities of phytochemicals: An update. Molecules 2012; 18(1): 322-53.
[http://dx.doi.org/10.3390/molecules18010322] [PMID: 23271469]
[45]
Kotov S, Gontova T, Kononenko N, Chernyavski E, Chikitkina V. Phytochemical analysis and anti-allergic activity of a combined herbal medicine based on bur-marigold, calendula and hawthorn. Pharmacia 2022; 69(1): 237-47.
[http://dx.doi.org/10.3897/pharmacia.69.e77624]
[46]
Plants of the World Online. Available from: https://powo.science.kew.org/.
[47]
Gruenwald J, Brendler T, Jaenicke C. Grape seed extract (Vitis vinifera) alleviate neurotoxicity and hepatotoxicity induced by lead acetate in male albino rats. J Behav Brain Sci 2012; 2(2): 176-84.
[48]
Thomson H. PDR for herbal medicines. North Olmsted: Medical Economics Company 1998.
[49]
Procházková D, Boušová I, Wilhelmová N. Antioxidant and prooxidant properties of flavonoids. Fitoterapia 2011; 82(4): 513-23.
[http://dx.doi.org/10.1016/j.fitote.2011.01.018] [PMID: 21277359]
[50]
Halliwell B. Reactive oxygen species in living systems: Source, biochemistry, and role in human disease. Am J Med 1991; 91(3): S14-22.
[http://dx.doi.org/10.1016/0002-9343(91)90279-7] [PMID: 1928205]
[51]
Wojcikowski K, Johnson DW, Gobe G. Herbs or natural substances as complementary therapies for chronic kidney disease: Ideas for future studies. J Lab Clin Med 2006; 147(4): 160-6.
[http://dx.doi.org/10.1016/j.lab.2005.11.011] [PMID: 16581343]
[52]
Sakihama Y, Cohen MF, Grace SC, Yamasaki H. Plant phenolic antioxidant and prooxidant activities: Phenolics-induced oxidative damage mediated by metals in plants. Toxicology 2002; 177(1): 67-80.
[http://dx.doi.org/10.1016/S0300-483X(02)00196-8] [PMID: 12126796]
[53]
Wang D, Bădărau AS, Swamy MK, et al. Arctium species secondary metabolites chemodiversity and bioactivities. Front Plant Sci 2019; 10: 834.
[http://dx.doi.org/10.3389/fpls.2019.00834] [PMID: 31338098]
[54]
Chan YS, Cheng LN, Wu JH, et al. A review of the pharmacological effects of Arctium lappa (burdock). Inflammopharmacology 2011; 19(5): 245-54.
[http://dx.doi.org/10.1007/s10787-010-0062-4] [PMID: 20981575]
[55]
Zhao J, Evangelopoulos D, Bhakta S, Gray AI, Seidel V. Antitubercular activity of Arctium lappa and Tussilago farfara extracts and constituents. J Ethnopharmacol 2014; 155(1): 796-800.
[http://dx.doi.org/10.1016/j.jep.2014.06.034] [PMID: 24955560]
[56]
Alhusaini A, Fadda L, Hasan IH, et al. Arctium lappa root extract prevents lead-induced liver injury by attenuating oxidative stress and inflammation, and activating Akt/GSK-3β signaling. Antioxidants 2019; 8(12): 582.
[http://dx.doi.org/10.3390/antiox8120582] [PMID: 31771282]
[57]
Kwon YK, Choi SJ, Kim CR, et al. Antioxidant and cognitive-enhancing activities of Arctium lappa L. roots in Aβ1-42-induced mouse model. Appl Biol Chem 2016; 59(4): 553-65.
[http://dx.doi.org/10.1007/s13765-016-0195-2]
[58]
Jiang XW, Bai JP, Zhang Q, et al. Caffeoylquinic acid derivatives from the roots of Arctium lappa L. (burdock) and their structure–activity relationships (SARs) of free radical scavenging activities. Phytochem Lett 2016; 15: 159-63.
[http://dx.doi.org/10.1016/j.phytol.2015.12.008]
[59]
Alsayied NF, Fernández JA, Schwarzacher T, Heslop-Harrison JS. Diversity and relationships of Crocus sativus and its relatives analysed by inter-retroelement amplified polymorphism (IRAP). Ann Bot 2015; 116(3): 359-68.
[http://dx.doi.org/10.1093/aob/mcv103] [PMID: 26138822]
[60]
WHO. WHO monographs on selected medicinal plants. Geneva: World Health Organization 2007; Vol. 3.
[61]
Ahrazem O, Rubio-Moraga A, Nebauer SG, Molina RV, Gómez-Gómez L. Saffron: Its phytochemistry, developmental processes, and biotechnological prospects. J Agric Food Chem 2015; 63(40): 8751-64.
[http://dx.doi.org/10.1021/acs.jafc.5b03194] [PMID: 26414550]
[62]
Mykhailenko O, Desenko V, Ivanauskas L, Georgiyants V. Standard operating procedure of ukrainian saffron cultivation according with good agricultural and collection practices to assure quality and traceability. Ind Crops Prod 2020; 151: 112376.
[http://dx.doi.org/10.1016/j.indcrop.2020.112376]
[63]
Abu-Izneid T, Rauf A, Khalil AA, et al. Nutritional and health beneficial properties of saffron (Crocus sativus L): A comprehensive review. Crit Rev Food Sci Nutr 2022; 62(10): 2683-706.
[http://dx.doi.org/10.1080/10408398.2020.1857682] [PMID: 33327732]
[64]
Lu C, Ke L, Li J, et al. Saffron (Crocus sativus L.) and health outcomes: A meta-research review of meta-analyses and an evidence mapping study. Phytomedicine 2021; 91: 153699.
[http://dx.doi.org/10.1016/j.phymed.2021.153699] [PMID: 34419735]
[65]
Mykhailenko O, Bezruk I, Ivanauskas L, Georgiyants V. Comparative analysis of apocarotenoids and phenolic constituents of Crocus sativus stigmas from 11 countries: Ecological impact. Arch Pharm 2022; 355(4): 2100468.
[http://dx.doi.org/10.1002/ardp.202100468] [PMID: 35048403]
[66]
Butnariu M, Quispe C, Herrera-Bravo J, et al. The pharmacological activities of Crocus sativus L.: A review based on the mechanisms and therapeutic opportunities of its phytoconstituents. Oxid Med Cell Longev 2022; 2022: 1-29.
[http://dx.doi.org/10.1155/2022/8214821] [PMID: 35198096]
[67]
Jarukas L, Vitkevicius K, Mykhailenko O, Bezruk I, Georgiyants V, Ivanauskas L. Effective isolation of picrocrocin and crocins from Saffron: From HPTLC to working standard obtaining. Molecules 2022; 27(13): 4286.
[http://dx.doi.org/10.3390/molecules27134286] [PMID: 35807531]
[68]
Kyriakoudi A, Z Tsimidou M. Latest advances in the extraction and determination of saffron apocarotenoids. Electrophoresis 2018; 39(15): 1846-59.
[http://dx.doi.org/10.1002/elps.201700455] [PMID: 29392745]
[69]
Jarukas L, Mykhailenko O, Baranauskaite J, Marksa M, Ivanauskas L. Investigation of organic acids in saffron stigmas (Crocus sativus L.) extract by derivatization method and determination by GC/MS. Molecules 2020; 25(15): 3427.
[http://dx.doi.org/10.3390/molecules25153427] [PMID: 32731562]
[70]
Farrin N, Ahmadikhatir S, Ostadrahimi A, Safaiyan A, Ahmadikhatir S. Saffron (Crocus sativus L.) supplements improve quality of life and appetite in atherosclerosis patients: A randomized clinical trial. J Res Med Sci 2022; 27(1): 30.
[http://dx.doi.org/10.4103/jrms.JRMS_1253_20] [PMID: 35548173]
[71]
Xing B, Li S, Yang J, et al. Phytochemistry, pharmacology, and potential clinical applications of saffron: A review. J Ethnopharmacol 2021; 281: 114555.
[http://dx.doi.org/10.1016/j.jep.2021.114555] [PMID: 34438035]
[72]
Zhou L, Cai Y, Yang L, Zou Z, Zhu J, Zhang Y. Comparative metabolomics analysis of stigmas and petals in Chinese saffron (Crocus sativus) by widely targeted metabolomics. Plants 2022; 11(18): 2427.
[http://dx.doi.org/10.3390/plants11182427] [PMID: 36145828]
[73]
Mykhailenko O, Kovalyov V, Goryacha O, Ivanauskas L, Georgiyants V. Biologically active compounds and pharmacological activities of species of the genus Crocus: A review. Phytochemistry 2019; 162: 56-89.
[http://dx.doi.org/10.1016/j.phytochem.2019.02.004] [PMID: 30856530]
[74]
Rahmani J, Manzari N, Thompson J, et al. The effect of saffron on weight and lipid profile: A systematic review, meta-analysis, and dose-response of randomized clinical trials. Phytother Res 2019; 33(9): 2244-55.
[http://dx.doi.org/10.1002/ptr.6420] [PMID: 31264281]
[75]
Moratalla-López N, Bagur MJ, Lorenzo C, Salinas MEMR, Alonso GL. Bioactivity and bioavailability of the major metabolites of Crocus sativus L. flower. Molecules 2019; 24(15): 2827.
[http://dx.doi.org/10.3390/molecules24152827] [PMID: 31382514]
[76]
Sun C, Nile SH, Zhang Y, et al. Novel insight into utilization of flavonoid glycosides and biological properties of saffron (Crocus sativus L.) flower byproducts. J Agric Food Chem 2020; 68(39): 10685-96.
[http://dx.doi.org/10.1021/acs.jafc.0c04076] [PMID: 32924469]
[77]
Mykhailenko O, Ivanauskas L, Bezruk I, Petrikaitė V, Georgiyants V. Application of quality by design approach to the pharmaceutical development of anticancer crude extracts of crocus sativus perianth. Sci Pharm 2022; 90(1): 19.
[http://dx.doi.org/10.3390/scipharm90010019]
[78]
Bathaie SZ, Mousavi SZ. Historical uses of saffron: Identifying potential new avenues for modern Research. Avicenna J Phytomed 2011; 1: 57-66.
[79]
Rezaee-Khorasany A, Razavi BM, Taghiabadi E, Tabatabaei Yazdi A, Hosseinzadeh H. Effect of saffron (stigma of Crocus sativus L.) aqueous extract on ethanol toxicity in rats: A biochemical, histopathological and molecular study. J Ethnopharmacol 2019; 237: 286-99.
[http://dx.doi.org/10.1016/j.jep.2019.03.048] [PMID: 30926569]
[80]
Popović-Djordjević JB, Kostić AŽ, Kiralan M. Antioxidant activities of bioactive compounds and various extracts obtained from saffron. InSaffron 2021; pp. 41-97.
[81]
Hatziagapiou K, Lambrou GI. The protective role of Crocus sativus L. (Saffron) against ischemia-reperfusion injury, hyperlipidemia and atherosclerosis: Nature opposing cardiovascular diseases. Curr Cardiol Rev 2018; 14(4): 272-89.
[http://dx.doi.org/10.2174/1573403X14666180628095918] [PMID: 29952263]
[82]
Bakshi HA, Faruck HL, Yadav SA, Tambuwala MM. The remarkable pharmacological efficacy of saffron spice via antioxidant, immunomodulatory, and antitumor activities. Saffron 2020: pp. 245-62.
[83]
Jiang Z, Gu M, Liu J, Li H, Peng J, Zhang Y. Anticancer activity of crocin against cervical carcinoma (HeLa cells): Bioassessment and toxicity evaluation of crocin in male albino rats. J Photochem Photobiol B 2018; 180: 118-24.
[http://dx.doi.org/10.1016/j.jphotobiol.2018.01.013] [PMID: 29413694]
[84]
Akhondzadeh S, Fallah-Pour H, Afkham K, Jamshidi AH, Khalighi-Cigaroudi F. Comparison of Crocus sativus L. and imipramine in the treatment of mild to moderate depression: A pilot double-blind randomized trial [ISRCTN45683816]. BMC Complement Altern Med 2004; 4(1): 12.
[http://dx.doi.org/10.1186/1472-6882-4-12] [PMID: 15341662]
[85]
Bian Y, Zhao C, Lee SMY. Neuroprotective potency of saffron against neuropsychiatric diseases, neurodegenerative diseases, and other brain disorders: From bench to bedside. Front Pharmacol 2020; 11: 579052.
[http://dx.doi.org/10.3389/fphar.2020.579052] [PMID: 33117172]
[86]
Mykhailenko O, Petrikaite V, Korinek M, et al. Bio-guided bioactive profiling and HPLC-DAD fingerprinting of Ukrainian saffron (Crocus sativus stigmas): Moving from correlation toward causation. BMC Complem Med Ther. 2021; 21: p. (1)203.
[87]
Cerdá-Bernad D, Valero-Cases E, Pastor JJ, Frutos MJ. Saffron bioactives crocin, crocetin and safranal: Effect on oxidative stress and mechanisms of action. Crit Rev Food Sci Nutr 2022; 62(12): 3232-49.
[http://dx.doi.org/10.1080/10408398.2020.1864279] [PMID: 33356506]
[88]
Broadhead GK, Grigg JR, McCluskey P, Hong T, Schlub TE, Chang AA. Saffron therapy for the treatment of mild/moderate age-related macular degeneration: A randomised clinical trial. Graefes Arch Clin Exp Ophthalmol 2019; 257(1): 31-40.
[http://dx.doi.org/10.1007/s00417-018-4163-x] [PMID: 30343354]
[89]
Marangoni D, Falsini B, Piccardi M, et al. Functional effect of Saffron supplementation and risk genotypes in early age-related macular degeneration: A preliminary report. J Transl Med 2013; 11(1): 228.
[http://dx.doi.org/10.1186/1479-5876-11-228] [PMID: 24067115]
[90]
Jessie SW, Krishnakantha TP. Inhibition of human platelet aggregation and membrane lipid peroxidation by food spice, saffron. Mol Cell Biochem 2005; 278(1-2): 59-63.
[http://dx.doi.org/10.1007/s11010-005-5155-9] [PMID: 16180089]
[91]
Hosseinzadeh H, Talebzadeh F. Anticonvulsant evaluation of safranal and crocin from Crocus sativus in mice. Fitoterapia 2005; 76(7-8): 722-4.
[http://dx.doi.org/10.1016/j.fitote.2005.07.008] [PMID: 16253437]
[92]
Premkumar K, Thirunavukkarasu C, Abraham SK, Santhiya ST, Ramesh A. Protective effect of saffron (Crocus sativus L.) aqueous extract against genetic damage induced by anti-tumor agents in mice. Hum Exp Toxicol 2006; 25(2): 79-84.
[http://dx.doi.org/10.1191/0960327106ht589oa] [PMID: 16539212]
[93]
Ye H, Luo J, Hu D, et al. Total flavonoids of Crocus sativus petals release tert-butyl hydroperoxide-induced oxidative stress in BRL-3A cells. Oxid Med Cell Longev 2021; 2021: 1-15.
[http://dx.doi.org/10.1155/2021/5453047] [PMID: 34194602]
[94]
Omidi A, Riahinia N, Montazer Torbati MB, Behdani MA. Hepatoprotective effect of Crocus sativus (saffron) petals extract against acetaminophen toxicity in male Wistar rats. Avicenna J Phytomed 2014; 4(5): 330-6.
[PMID: 25386395]
[95]
Hoshyar R, Sebzari A, Balforoush M, Valavi M, Hosseini M. The impact of Crocus sativus stigma against methotrexate-induced liver toxicity in rats. J Complement Integr Med 2019; 17(2)
[http://dx.doi.org/10.1515/jcim-2019-0201] [PMID: 31675349]
[96]
Lari P, Abnous K, Imenshahidi M, Rashedinia M, Razavi M, Hosseinzadeh H. Evaluation of diazinon-induced hepatotoxicity and protective effects of crocin. Toxicol Ind Health 2015; 31(4): 367-76.
[http://dx.doi.org/10.1177/0748233713475519] [PMID: 23406950]
[97]
Vahdati Hassani F, Mehri S, Abnous K, Birner-Gruenberger R, Hosseinzadeh H. Protective effect of crocin on BPA-induced liver toxicity in rats through inhibition of oxidative stress and downregulation of MAPK and MAPKAP signaling pathway and miRNA-122 expression. Food Chem Toxicol 2017; 107(Pt A): 395-405.
[http://dx.doi.org/10.1016/j.fct.2017.07.007] [PMID: 28689058]
[98]
Aras İ, Bayram İ, Oto G, Erten R, Öter Almali A, Akman Ilik Z. Saffron and saffron ingredients like safranal and crocin’s cytoprotective effects on carbon tetrachloride induced liver damage. East J Med 2022; 27(3): 424-31.
[http://dx.doi.org/10.5505/ejm.2022.34356]
[99]
Razavi BM, Hosseinzadeh H. Saffron as an antidote or a protective agent against natural or chemical toxicities. Daru 2015; 23(1): 31.
[http://dx.doi.org/10.1186/s40199-015-0112-y] [PMID: 25928729]
[100]
Zarei B, Elyasi S. Saffron nephroprotective effects against medications and toxins: A review of preclinical data. Iran J Basic Med Sci 2022; 25(4): 419-34.
[PMID: 35656071]
[101]
Hosseinzadeh H, Sadeghnia HR. Safranal, a constituent of Crocus sativus (saffron), attenuated cerebral ischemia induced oxidative damage in rat hippocampus. J Pharm Pharm Sci 2005; 8(3): 394-9.
[PMID: 16401389]
[102]
Hosseinzadeh H, Sadeghnia H, Rahimi A. Effect of safranal on extracellular hippocampal levels of glutamate and aspartate during kainic Acid treatment in anesthetized rats. Planta Med 2008; 74(12): 1441-5.
[http://dx.doi.org/10.1055/s-2008-1081335] [PMID: 18816431]
[103]
Ahmad AS, Ansari MA, Ahmad M, et al. Neuroprotection by crocetin in a hemi-parkinsonian rat model. Pharmacol Biochem Behav 2005; 81(4): 805-13.
[http://dx.doi.org/10.1016/j.pbb.2005.06.007] [PMID: 16005057]
[104]
Bukhari SI, Manzoor M, Dhar MK. A comprehensive review of the pharmacological potential of Crocus sativus and its bioactive apocarotenoids. Biomed Pharmacother 2018; 98: 733-45.
[http://dx.doi.org/10.1016/j.biopha.2017.12.090] [PMID: 29306211]
[105]
Mir MA, Rameashkannan MV, Raj JA, Malik AH, Rajesh TS. Phytochemical and pharmacological profile of Crocus sativus L. by-products found in Kashmir. Acta Hortic 2018; (1200): 213-26.
[http://dx.doi.org/10.17660/ActaHortic.2018.1200.35]
[106]
Kakouri E, Daferera D, Paramithiotis S, Astraka K, Drosinos E, Polissiou M. Crocus sativus L. tepals: The natural source of antioxidant and antimicrobial factors. J Appl Res Med Aromat Plants 2016; 2016: 4.
[107]
Frutos MJ. Nonvitamin and Nonmineral Nutritional Supplements. Amsterdam: Elsevier 2019.
[108]
Miraj S, Kiani S. Study of therapeutic effects of Cynara scolymus L.: A review. Pharm Lett 2016; 8(9): 168-73.
[109]
WHO. World Health Organization: Geneva. 2009.
[110]
Valenzuela A, Aspillaga M, Vial S, Guerra R. Selectivity of silymarin on the increase of the glutathione content in different tissues of the rat. Planta Med 1989; 55(5): 420-2.
[http://dx.doi.org/10.1055/s-2006-962056] [PMID: 2813578]
[111]
Salem MB, Affes H, Ksouda K, et al. Pharmacological studies of artichoke leaf extract and their health benefits. Plant Foods Hum Nutr 2015; 70(4): 441-53.
[http://dx.doi.org/10.1007/s11130-015-0503-8] [PMID: 26310198]
[112]
Zhu X, Zhang H, Lo R. Phenolic compounds from the leaf extract of artichoke (Cynara scolymus L.) and their antimicrobial activities. J Agric Food Chem 2004; 52(24): 7272-8.
[http://dx.doi.org/10.1021/jf0490192] [PMID: 15563206]
[113]
Mossi A, Echeverrigaray S. In II WOCMAP Congress Medicinal and Aromatic Plants, Part 2: Pharmacognosy, Pharmacology, Phytomedicine. Toxicology 1997; 501: 111-4.
[114]
Aksu Ö, Altinterim B. Hepatoprotective effects of artichoke (Cynara scolymus). Bilim ve Genclik Dergisi 2013; 1(2): 44-9.
[115]
Bekheet S. In vitro biomass production of liver-protective compounds from Globe artichoke (Cynara scolymus L.) and Milk thistle (Silybum marianum) plants. Emir J Food Agric 2011; 23(5): 473.
[116]
Betancor-Fernández A, Pérez-Gálvez A, Sies H, Stahl W. Screening pharmaceutical preparations containing extracts of turmeric rhizome, artichoke leaf, devil’s claw root and garlic or salmon oil for antioxidant capacity. J Pharm Pharmacol 2010; 55(7): 981-6.
[http://dx.doi.org/10.1211/0022357021468] [PMID: 12906755]
[117]
Colak E, Ustuner MC, Tekin N, et al. The hepatocurative effects of Cynara scolymus L. leaf extract on carbon tetrachloride-induced oxidative stress and hepatic injury in rats. Springerplus 2016; 5(1): 216.
[http://dx.doi.org/10.1186/s40064-016-1894-1] [PMID: 27026910]
[118]
Pereira C, Calhelha RC, Barros L, Ferreira ICFR. Antioxidant properties, anti-hepatocellular carcinoma activity and hepatotoxicity of artichoke, milk thistle and borututu. Ind Crops Prod 2013; 49: 61-5.
[http://dx.doi.org/10.1016/j.indcrop.2013.04.032]
[119]
Gebhardt R, Fausel M. Antioxidant and hepatoprotective effects of artichoke extracts and constituents in cultured rat hepatocytes. Toxicol In Vitro 1997; 11(5): 669-72.
[http://dx.doi.org/10.1016/S0887-2333(97)00078-7] [PMID: 20654368]
[120]
Valentão P, Fernandes E, Carvalho F, Andrade PB, Seabra RM, Bastos ML. Antioxidant activity of Centaurium erythraea infusion evidenced by its superoxide radical scavenging and xanthine oxidase inhibitory activity. J Agric Food Chem 2001; 49(7): 3476-9.
[http://dx.doi.org/10.1021/jf001145s] [PMID: 11453794]
[121]
Popular U. Alcachofra-Cynara scolymus. CMAJ 2003; 169(12): 1269-73.
[PMID: 14662662]
[122]
Tedeschi M, Bohm S, Di Re F, et al. Glutathione and detoxification. Cancer Treat Rev 1990; 17(2-3): 203-8.
[http://dx.doi.org/10.1016/0305-7372(90)90048-K] [PMID: 2272034]
[123]
Özdemir N, Eröksüz Y, Pamukçu E, Kandemir FM, Kaymaz MB. Effects of aqueous artichoke (Cynara scolymus) leaf extract on hepatic damage generated by alpha-amanitine. Kafkas Univ Vet Fak Derg 2017; 23(1): 155-160.
[124]
Amini MR, Sheikhhossein F, Talebyan A, Bazshahi E, Djafari F, Hekmatdoost A. Effects of artichoke supplementation on liver enzymes: A systematic review and meta-analysis of randomized controlled trials. Clin Nutr Res 2022; 11(3): 228-39.
[http://dx.doi.org/10.7762/cnr.2022.11.3.228] [PMID: 35949559]
[125]
Zi X, Mukhtar H, Agarwal R. Novel cancer chemopreventive effects of a flavonoid antioxidant silymarin: Inhibition of mRNA expression of an endogenous tumor promoter TNF α. Biochem Biophys Res Commun 1997; 239(1): 334-9.
[http://dx.doi.org/10.1006/bbrc.1997.7375] [PMID: 9345320]
[126]
Numan IT, Hamad MN, Fadhil AA, Najim SM. The possible cardio-protective effects of ethanolic artichoke extract against 5-fluorouracil induced cardiac toxicity in rats. Iraqi J Pharm Sci 2016; 25(1): 1-5.
[http://dx.doi.org/10.31351/vol25iss1pp1-5]
[127]
Jiménez-Escrig A, Dragsted LO, Daneshvar B, Pulido R, Saura- Calixto F. In vitro antioxidant activities of edible artichoke (Cynara scolymus L.) and effect on biomarkers of antioxidants in rats. J Agric Food Chem 2003; 51(18): 5540-5.
[http://dx.doi.org/10.1021/jf030047e] [PMID: 12926911]
[128]
da Silva RP, Jacociunas LV, de Carli RF, et al. Genotoxic and chemopreventive assessment of Cynara scolymus L. aqueous extract in a human-derived liver cell line. Drug Chem Toxicol 2017; 40(4): 484-8.
[http://dx.doi.org/10.1080/01480545.2017.1279625] [PMID: 28147701]
[129]
Presentation to American Public Health Association. Risk assessment: Are children its first victims. 1996.
[130]
Carpentieri S, Augimeri G, Ceramella J, et al. Antioxidant and anti-inflammatory effects of extracts from pulsed electric field-treated artichoke by-products in lipopolysaccharide-stimulated human THP-1 macrophages. Foods 2022; 11(15): 2250.
[http://dx.doi.org/10.3390/foods11152250] [PMID: 35954020]
[131]
Rejeb IB, Dhen N, Gargouri M, Boulila A. Chemical composition, antioxidant potential and enzymes inhibitory properties of globe artichoke by-products. Chem Biodivers 2020; 17(9): cbdv.202000073.
[http://dx.doi.org/10.1002/cbdv.202000073] [PMID: 32628807]
[132]
Kalthoff S, Strassburg CP. Contribution of human UDP-glucuronosyltransferases to the antioxidant effects of propolis, artichoke and silymarin. Phytomedicine 2019; 56: 35-9.
[http://dx.doi.org/10.1016/j.phymed.2018.08.013] [PMID: 30668351]
[133]
WHO. World Health Organization 1999.
[134]
ATEŞ. Antimicrobial activities of various medicinal and commercial plant extracts. Turk J Biol 2003; 27(3): 157-62.
[135]
Tohma HS, Gulçin I. Antioxidant and radical scavenging activity of aerial parts and roots of Turkish liquorice (Glycyrrhiza glabra L.). Int J Food Prop 2010; 13(4): 657-71.
[http://dx.doi.org/10.1080/10942911003773916]
[136]
Bahmani M, Rafieian-Kopaei M, Jeloudari M, et al. A review of the health effects and uses of drugs of plant licorice (Glycyrrhiza glabra L.) in Iran. Asian Pac J Trop Dis 2014; 4(S2): S847-9.
[http://dx.doi.org/10.1016/S2222-1808(14)60742-8]
[137]
Fenwick GR, Lutomski J, Nieman C. Liquorice, Glycyrrhiza glabra L.-Composition, uses and analysis. Food Chem 1990; 38(2): 119-43.
[http://dx.doi.org/10.1016/0308-8146(90)90159-2]
[138]
Stickel F, Schuppan D. Herbal medicine in the treatment of liver diseases. Dig Liver Dis 2007; 39(4): 293-304.
[http://dx.doi.org/10.1016/j.dld.2006.11.004] [PMID: 17331820]
[139]
Khan MTH, Ather A, Thompson KD, Gambari R. Extracts and molecules from medicinal plants against herpes simplex viruses. Antiviral Res 2005; 67(2): 107-19.
[http://dx.doi.org/10.1016/j.antiviral.2005.05.002] [PMID: 16040137]
[140]
Seo JY, Lee YS, Kim HJ, et al. Dehydroglyasperin C isolated from licorice caused Nrf2-mediated induction of detoxifying enzymes. J Agric Food Chem 2010; 58(3): 1603-8.
[http://dx.doi.org/10.1021/jf9036062] [PMID: 20088509]
[141]
Wahab S, Annadurai S, Abullais SS, et al. Glycyrrhiza glabra (Licorice): A comprehensive review on its phytochemistry, biological activities, clinical evidence and toxicology. Plants 2021; 10(12): 2751.
[http://dx.doi.org/10.3390/plants10122751] [PMID: 34961221]
[142]
Damle M. Glycyrrhiza glabra (Liquorice)-A potent medicinal herb. Int J Herb Med 2014; 2(2): 132-6.
[143]
Cheel J, Antwerpen PV, Tůmová L, et al. Free radical-scavenging, antioxidant and immunostimulating effects of a licorice infusion (Glycyrrhiza glabra L.). Food Chem 2010; 122(3): 508-17.
[http://dx.doi.org/10.1016/j.foodchem.2010.02.060]
[144]
Li X, Sun R, Liu R. Natural products in licorice for the therapy of liver diseases: Progress and future opportunities. Pharmacol Res 2019; 144: 210-26.
[http://dx.doi.org/10.1016/j.phrs.2019.04.025] [PMID: 31022523]
[145]
Ding X, Kaminsky LS. Human extrahepatic cytochromes P450: Function in xenobiotic metabolism and tissue-selective chemical toxicity in the respiratory and gastrointestinal tracts. Annu Rev Pharmacol Toxicol 2003; 43(1): 149-73.
[http://dx.doi.org/10.1146/annurev.pharmtox.43.100901.140251] [PMID: 12171978]
[146]
Sharma V, Katiyar A, Agrawal R. Glycyrrhiza glabra: Chemistry and pharmacological activity. Sweetener 2018; 2018(1): 87-100.
[147]
Al-Snafi AE. Glycyrrhiza glabra: A phytochemical and pharmacological review. IOSR J Pharm 2018; 8(6): 1-17.
[148]
Wang C, Duan X, Sun X, et al. Protective effects of glycyrrhizic acid from edible botanical Glycyrrhiza glabra against non-alcoholic steatohepatitis in mice. Food Funct 2016; 7(9): 3716-23.
[http://dx.doi.org/10.1039/C6FO00773B] [PMID: 27487733]
[149]
Jung JC, Lee YH, Kim SH, et al. Hepatoprotective effect of licorice, the root of Glycyrrhiza uralensis Fischer, in alcohol-induced fatty liver disease. BMC Complement Altern Med 2015; 16(1): 19.
[http://dx.doi.org/10.1186/s12906-016-0997-0] [PMID: 26801973]
[150]
Huang X, Qin J, Lu S. Magnesium isoglycyrrhizinate protects hepatic L02 cells from ischemia/reperfusion induced injury. Int J Clin Exp Pathol 2014; 7(8): 4755-64.
[PMID: 25197346]
[151]
Liu M, Zheng B, Liu P, et al. Exploration of the hepatoprotective effect and mechanism of magnesium isoglycyrrhizinate in mice with arsenic trioxide-induced acute liver injury. Mol Med Rep 2021; 23(6): 438.
[http://dx.doi.org/10.3892/mmr.2021.12077] [PMID: 33846815]
[152]
Wang KL, Yu YC, Chen HY, et al. Recent advances in Glycyrrhiza glabra (Licorice)-containing herbs alleviating radiotherapy- and chemotherapy-induced adverse reactions in cancer treatment. Metabolites 2022; 12(6): 535.
[http://dx.doi.org/10.3390/metabo12060535] [PMID: 35736467]
[153]
Pal SK, Shukla Y. Herbal medicine: Current status and the future. Asian Pac J Cancer Prev 2003; 4(4): 281-8.
[PMID: 14728584]
[154]
Manns MP, Wedemeyer H, Singer A, et al. Glycyrrhizin in patients who failed previous interferon alpha-based therapies: Biochemical and histological effects after 52 weeks. J Viral Hepat 2012; 19(8): 537-46.
[http://dx.doi.org/10.1111/j.1365-2893.2011.01579.x] [PMID: 22762137]
[155]
Janbaz KH, Saeed SA, Gilani AH. Protective effect of rutin on paracetamol- and CCl4-induced hepatotoxicity in rodents. Fitoterapia 2002; 73(7-8): 557-63.
[http://dx.doi.org/10.1016/S0367-326X(02)00217-4] [PMID: 12490212]
[156]
Pljevljakušić D, Bigović D, Janković T, Jelačić S, Šavikin K. Sandy everlasting (Helichrysum arenarium (L.) Moench): Botanical, chemical and biological properties. Front Plant Sci 2018; 9: 1123.
[http://dx.doi.org/10.3389/fpls.2018.01123] [PMID: 30131818]
[157]
Bougatsos C, Meyer JJM, Magiatis P, Vagias C, Chinou IB. Composition and antimicrobial activity of the essential oils of Helichrysum kraussii Sch. Bip. andH. rugulosum Less. from South Africa. Flavour Fragrance J 2003; 18(1): 48-51.
[http://dx.doi.org/10.1002/ffj.1152]
[158]
Pyo YH, Lee TC, Logendra L, Rosen RT. Antioxidant activity and phenolic compounds of Swiss chard (Beta vulgaris subspecies cycla) extracts. Food Chem 2004; 85(1): 19-26.
[http://dx.doi.org/10.1016/S0308-8146(03)00294-2]
[159]
Bigovic D, Brankovic S, Kitic D, et al. Relaxant effect of the ethanol extract of Helichrysum plicatum (Asteraceae) on isolated rat ileum contractions. Molecules 2010; 15(5): 3391-401.
[http://dx.doi.org/10.3390/molecules15053391] [PMID: 20657488]
[160]
Bigović D, Šavikin K, Janković T, et al. Antiradical and cytotoxic activity of different Helichrysum plicatum flower extracts. Nat Prod Commun 2011; 6(6): 1934578X1100600.
[http://dx.doi.org/10.1177/1934578X1100600617] [PMID: 21815418]
[161]
WHO. World Health Organization 2010.
[162]
Schnaubelt K. Essential oil therapy according to traditional Chinese medical concepts. Int J Aromather 2005; 15(2): 98-105.
[http://dx.doi.org/10.1016/j.ijat.2005.03.002]
[163]
Tepe B, Sökmen M, Akpulat HA, Sokmen A. In vitro antioxidant activities of the methanol extracts of four Helichrysum species from Turkey. Food Chem 2005; 90(4): 685-9.
[http://dx.doi.org/10.1016/j.foodchem.2004.04.030]
[164]
Kladar NV, Anačkov GT, Rat MM, et al. Biochemical characterization of Helichrysum italicum (Roth) G.Don subsp. italicum (Asteraceae) from Montenegro: Phytochemical screening, chemotaxonomy, and antioxidant properties. Chem Biodivers 2015; 12(3): 419-31.
[http://dx.doi.org/10.1002/cbdv.201400174] [PMID: 25766915]
[165]
Prior RL, Cao G. Antioxidant phytochemicals in fruits and vegetables: Diet and health implications. HortScience 2000; 35(4): 588-92.
[http://dx.doi.org/10.21273/HORTSCI.35.4.588]
[166]
Shikov AN, Pozharitskaya ON, Makarov VG, Wagner H, Verpoorte R, Heinrich M. Medicinal plants of the Russian pharmacopoeia; Their history and applications. J Ethnopharmacol 2014; 154(3): 481-536.
[http://dx.doi.org/10.1016/j.jep.2014.04.007] [PMID: 24742754]
[167]
Czinner E, Hagymási K, Blázovics A, Kéry Á, Szőke É, Lemberkovics É. In vitro antioxidant properties of Helichrysum arenarium (L.) Moench. J Ethnopharmacol 2000; 73(3): 437-43.
[http://dx.doi.org/10.1016/S0378-8741(00)00304-4] [PMID: 11090997]
[168]
Franco JV, Arancibia M, Szeinman DJ, Alonso IT, Vietto V. Herbal (non-Chinese) medicines for functional dyspepsia. Cochrane Database Syst Rev 2019; 2019(4): CD013323.
[169]
WHO. World Health Organization: Geneva, 2002. 2002.
[170]
Kleemann B, Loos B, Scriba TJ, Lang D, Davids LM. St John’s Wort (Hypericum perforatum L.) photomedicine: Hypericin-photodynamic therapy induces metastatic melanoma cell death. PLoS One 2014; 9(7): e103762.
[http://dx.doi.org/10.1371/journal.pone.0103762] [PMID: 25076130]
[171]
Karppinen K, Hokkanen J, Mattila S, Neubauer P, Hohtola A. Octaketide-producing type III polyketide synthase from Hypericum perforatum is expressed in dark glands accumulating hypericins. FEBS J 2008; 275(17): 4329-42.
[http://dx.doi.org/10.1111/j.1742-4658.2008.06576.x] [PMID: 18647343]
[172]
Nobakht SZ, Akaberi M, Mohammadpour AH, Tafazoli Moghadam A, Emami SA. Hypericum perforatum: Traditional uses, clinical trials, and drug interactions. Iran J Basic Med Sci 2022; 25(9): 1045-58.
[PMID: 36246064]
[173]
Barnes J, Anderson LA, Phillipson JD, Newall CA. Herbal medicines. London: Pharmaceutical press 2007.
[174]
Cakir M, Duzova H, Baysal I, et al. The effect of Hypericum perforatum on kidney ischemia/reperfusion damage. Ren Fail 2017; 39(1): 385-91.
[http://dx.doi.org/10.1080/0886022X.2017.1287734] [PMID: 28209087]
[175]
Papetti A, Daglia M, Gazzani G. Anti- and pro-oxidant activity of water soluble compounds in Cichorium intybus var. silvestre (Treviso red chicory). J Pharm Biomed Anal 2002; 30(4): 939-45.
[http://dx.doi.org/10.1016/S0731-7085(02)00473-9] [PMID: 12408883]
[176]
Okmen G, Balpınar N. The biological activities of Hypericum perforatum L. Afr J Tradit Complement Altern Med 2016; 14(1): 213-8.
[http://dx.doi.org/10.21010/ajtcam.v14i1.23] [PMID: 28480399]
[177]
Pompella A, Visvikis A, Paolicchi A, Tata VD, Casini AF. The changing faces of glutathione, a cellular protagonist. Biochem Pharmacol 2003; 66(8): 1499-503.
[http://dx.doi.org/10.1016/S0006-2952(03)00504-5] [PMID: 14555227]
[178]
Wang Z, Gorski J, Hamman M, Huang S, Lesko L, Hall S. The effects of St John’s wort (Hypericum perforatum) on human cytochrome P450 activity. Clin Pharmacol Ther 2001; 70(4): 317-26.
[http://dx.doi.org/10.1016/S0009-9236(01)17221-8] [PMID: 11673747]
[179]
Dürr D, Stieger B, Kullak-Ublick GA, et al. St John’s Wort induces intestinal P-glycoprotein/MDR1 and intestinal and hepatic CYP3A4. Clin Pharmacol Ther 2000; 68(6): 598-604.
[http://dx.doi.org/10.1067/mcp.2000.112240] [PMID: 11180019]
[180]
Cott JM. Herb-drug interactions: Focus on pharmacokinetics. CNS Spectr 2001; 6(10): 827-32.
[http://dx.doi.org/10.1017/S1092852900001644] [PMID: 15334037]
[181]
Moore LB, Goodwin B, Jones SA, et al. St. John’s wort induces hepatic drug metabolism through activation of the pregnane X receptor. Proc Natl Acad Sci USA 2000; 97(13): 7500-2.
[http://dx.doi.org/10.1073/pnas.130155097] [PMID: 10852961]
[182]
Wentworth JM, Agostini M, Love J, Schwabe JW, Chatterjee VK. St John’s wort, a herbal antidepressant, activates the steroid X receptor. J Endocrinol 2000; 166(3): R11-6.
[http://dx.doi.org/10.1677/joe.0.166r011] [PMID: 10974665]
[183]
Kliewer SA. The nuclear pregnane X receptor regulates xenobiotic detoxification. J Nutr 2003; 133(7) (Suppl.): 2444S-7S.
[http://dx.doi.org/10.1093/jn/133.7.2444S] [PMID: 12840222]
[184]
Sun CP, Jia ZL, Huo XK, et al. Medicinal Inula species: Phytochemistry, biosynthesis, and bioactivities. Am J Chin Med 2021; 49(2): 315-58.
[http://dx.doi.org/10.1142/S0192415X21500166] [PMID: 33622212]
[185]
Stojanović-Radić Z, Čomić L, Radulović N, et al. Antistaphylococcal activity of Inula helenium L. root essential oil: Eudesmane sesquiterpene lactones induce cell membrane damage. Eur J Clin Microbiol Infect Dis 2012; 31(6): 1015-25.
[http://dx.doi.org/10.1007/s10096-011-1400-1] [PMID: 21901633]
[186]
Orhan N, Gökbulut A, Deliorman Orhan D. Antioxidant potential and carbohydrate digestive enzyme inhibitory effects of five Inula species and their major compounds. S Afr J Bot 2017; 111: 86-92.
[http://dx.doi.org/10.1016/j.sajb.2017.03.040]
[187]
Bourrel C, Vilarem G, Perineau F. Chemical analysis, bacteriostatic and fungistatic properties of the essential oil of elecampane (Inula helenium L.). J Essent Oil Res 1993; 5(4): 411-7.
[http://dx.doi.org/10.1080/10412905.1993.9698251]
[188]
Seo JY, Lim SS, Kim JR, et al. Nrf2-mediated induction of detoxifying enzymes by alantolactone present in Inula helenium. Phytother Res 2008; 22(11): 1500-5.
[http://dx.doi.org/10.1002/ptr.2521] [PMID: 18702092]
[189]
Seo JY, Park J, Kim HJ, et al. Isoalantolactone from Inula helenium caused Nrf2-mediated induction of detoxifying enzymes. J Med Food 2009; 12(5): 1038-45.
[http://dx.doi.org/10.1089/jmf.2009.0072] [PMID: 19857067]
[190]
Igwe EO, Charlton KE. A systematic review on the health effects of plums (Prunus domestica and Prunus salicina). Phytother Res 2016; 30(5): 701-31.
[http://dx.doi.org/10.1002/ptr.5581] [PMID: 26992121]
[191]
Nighat S. Prunus domestica: A review. Asian J Pharm Pharmacol 2020; 4(3): 21-9.
[192]
Stacewicz-Sapuntzakis M. Dried plums and their products: Composition and health effects-an updated review. Crit Rev Food Sci Nutr 2013; 53(12): 1277-302.
[http://dx.doi.org/10.1080/10408398.2011.563880] [PMID: 24090144]
[193]
Slimestad R, Vangdal E, Brede C. Analysis of phenolic compounds in six Norwegian plum cultivars (Prunus domestica L.). J Agric Food Chem 2009; 57(23): 11370-5.
[http://dx.doi.org/10.1021/jf902054x] [PMID: 19888727]
[194]
Lenchyk L, Upyr T, Mohammed S, Komisarenko M. Study of amino acid composition of Prunus domestica fruits pectin complex. Int J Pharm Chem 2020; 6(5): 60.
[http://dx.doi.org/10.11648/j.ijpc.20200605.12]
[195]
Mohammed S, Upyr T, Shapoval O, Lenchyk L, Georgiev K. Determination of phenolic compounds in Prunus domestica fruits extract and its pharmacological activity. J of IMAB 2019; 25(2): 2589-94.
[196]
Piirainen L, Peuhkuri K, Bäckström K, Korpela R, Salminen S. Prune juice has a mild laxative effect in adults with certain gastrointestinal symptoms. Nutr Res 2007; 27(8): 511-3.
[http://dx.doi.org/10.1016/j.nutres.2007.06.008]
[197]
Senyuk I, Bashar A-S, Lenchyk L. Investigation of different substances catharic properties made from Prunus domestica. Ukraïns’kij bìofarmacevtičnij žurnal 2017; 2017: 21-5.
[198]
Fung DYC, Thompson L. “Natural” suppression of the growth of foodborne pathogens in meat products. Int Rev Food Sci Technol 2009; 1: 80-1.
[199]
Senjuk IV, Jabar ASB, Basim MS. Study of hepatoprotective action of extracts from garden plum fruit. Pharm Rev 2018; 4: 57-61.
[200]
Upyr T, Mohammed S, Bashar A-J, Lenchyk L, Senyuk I, Kyslychenko V. Phytochemical and pharmacological study of polysaccharide complexes of Prunus domestica fruit. ScienceRise. Pharm Sci 2018; 2018: 32-7.
[201]
Ferramosca A, Treppiccione L, Di Giacomo M, et al. Prunus mahaleb fruit extract prevents chemically induced colitis and enhances mitochondrial oxidative metabolism via the activation of the Nrf2 pathway. Mol Nutr Food Res 2019; 63(22): 1900350.
[http://dx.doi.org/10.1002/mnfr.201900350] [PMID: 31410984]
[202]
Sabir S, Arsshad M, Asif S, Chaudhari SK. An insight into medicinal and therapeutic potential of Silybum marianum (L.) Gaertn. Int J Biosci 2014; 4(11): 104-15.
[203]
Kumar T, Larokar YK, Iyer SK, Kumar A, Tripathi D. Phytochemistry and pharmacological activities of Silybum marianum: A review. Apex 2011; 10: 12.
[204]
Saller R, Brignoli R, Melzer J, Meier R. An updated systematic review with meta-analysis for the clinical evidence of silymarin. Forsch Komplement Med 2008; 15(1): 9-20.
[http://dx.doi.org/10.1159/000113648] [PMID: 18334810]
[205]
Balandrin M, Klocke J. Medicinal and Aromatic Plants I. Heidelberg: Springer 1988; pp. 3-36.
[http://dx.doi.org/10.1007/978-3-642-73026-9_1]
[206]
Khan MA, Abbasi BH, Ahmed N, Ali H. Effects of light regimes on in vitro seed germination and silymarin content in Silybum marianum. Ind Crops Prod 2013; 46: 105-10.
[http://dx.doi.org/10.1016/j.indcrop.2012.12.035]
[207]
Kurkin VA. Phenylpropanoids from medicinal plants: Distribution, classification, structural analysis, and biological activity. Chem Nat Compd 2003; 39(2): 123-53.
[http://dx.doi.org/10.1023/A:1024876810579]
[208]
Madani H, Talebolhos M, Asgary S, Naderi GH. Hepatoprotective activity of Silybum marianum and Cichorium intybus against thioacetamide in rat. Pak J Nutr 2007; 7(1): 172-6.
[http://dx.doi.org/10.3923/pjn.2008.172.176]
[209]
Flora K, Hahn M, Rosen H, Benner K. Milk thistle (Silybum marianum) for the therapy of liver disease. Am J Gastroenterol 1998; 93(2): 139-43.
[http://dx.doi.org/10.1111/j.1572-0241.1998.00139.x] [PMID: 9468229]
[210]
Shaker E, Mahmoud H, Mnaa S. Silymarin, the antioxidant component and Silybum marianum extracts prevent liver damage. Food Chem Toxicol 2010; 48(3): 803-6.
[http://dx.doi.org/10.1016/j.fct.2009.12.011] [PMID: 20034535]
[211]
Milić N, Milošević N, Suvajdžić L, Žarkov M, Abenavoli L. New therapeutic potentials of milk thistle (Silybum marianum). Nat Prod Commun 2013; 8(12): 1934578X1300801.
[http://dx.doi.org/10.1177/1934578X1300801236] [PMID: 24555302]
[212]
Fanoudi S, Alavi MS, Karimi G, Hosseinzadeh H. Milk thistle (Silybum marianum) as an antidote or a protective agent against natural or chemical toxicities: A review. Drug Chem Toxicol 2020; 43(3): 240-54.
[http://dx.doi.org/10.1080/01480545.2018.1485687] [PMID: 30033764]
[213]
Bijak M. Silybin, a major bioactive component of milk thistle (Silybum marianum L. Gaernt.)-Chemistry, bioavailability, and metabolism. Molecules 2017; 22(11): 1942.
[http://dx.doi.org/10.3390/molecules22111942] [PMID: 29125572]
[214]
Kamalakkannan N, Prince PSM. Antihyperglycaemic and antioxidant effect of rutin, a polyphenolic flavonoid, in streptozotocin-induced diabetic wistar rats. Basic Clin Pharmacol Toxicol 2006; 98(1): 97-103.
[http://dx.doi.org/10.1111/j.1742-7843.2006.pto_241.x] [PMID: 16433898]
[215]
Al-Enazi MM. Combined therapy of rutin and silymarin has more protective effects on streptozotocin-induced oxidative stress in rats. J Appl Pharm Sci 2014; 4(1): 21-8.
[http://dx.doi.org/10.7324/JAPS.2014.40104]
[216]
Ikeda T, Yokomizo K, Okawa M, et al. Anti-herpes virus type 1 activity of oleanane-type triterpenoids. Biol Pharm Bull 2005; 28(9): 1779-81.
[http://dx.doi.org/10.1248/bpb.28.1779] [PMID: 16141560]
[217]
Dehmlow C, Erhard J, de Groot H. Inhibition of Kupffer cell functions as an explanation for the hepatoprotective properties of silibinin. Hepatology 1996; 23(4): 749-54.
[http://dx.doi.org/10.1002/hep.510230415] [PMID: 8666328]
[218]
Morazzoni P. Silybum marianum (Carduus marianus). Fitoterapia 1995; 66: 3-42.
[219]
Karimi G, Vahabzadeh M, Lari P, Rashedinia M, Moshiri M. “Silymarin”, a promising pharmacological agent for treatment of diseases. Iran J Basic Med Sci 2011; 14(4): 308-17.
[PMID: 23492971]
[220]
Abenavoli L, Capasso R, Milic N, Capasso F. Milk thistle in liver diseases: Past, present, future. Phytother Res 2010; 24(10): 1423-32.
[http://dx.doi.org/10.1002/ptr.3207] [PMID: 20564545]
[221]
Pradhan SC, Girish C. Hepatoprotective herbal drug, silymarin from experimental pharmacology to clinical medicine. Indian J Med Res 2006; 124(5): 491-504.
[PMID: 17213517]
[222]
Vargas-Mendoza N, Madrigal-Santillán E, Morales-González A, et al. Hepatoprotective effect of silymarin. World J Hepatol 2014; 6(3): 144-9.
[http://dx.doi.org/10.4254/wjh.v6.i3.144] [PMID: 24672644]
[223]
Spiridon I, Nechita C, Niculaua M, et al. Antioxidant and chemical properties of Inula helenium root extracts. Open Chem 2013; 11(10): 1699-709.
[http://dx.doi.org/10.2478/s11532-013-0295-3]
[224]
Ebrahimpour koujan S, Gargari BP, Mobasseri M, Valizadeh H, Asghari-Jafarabadi M. Effects of Silybum marianum (L.) Gaertn. (silymarin) extract supplementation on antioxidant status and hs-CRP in patients with type 2 diabetes mellitus: A randomized, triple-blind, placebo-controlled clinical trial. Phytomedicine 2015; 22(2): 290-6.
[http://dx.doi.org/10.1016/j.phymed.2014.12.010] [PMID: 25765835]
[225]
Kim SH, Cheon HJ, Yun N, et al. Protective effect of a mixture of Aloe vera and Silybum marianum against carbon tetrachloride-induced acute hepatotoxicity and liver fibrosis. J Pharmacol Sci 2009; 109(1): 119-27.
[http://dx.doi.org/10.1254/jphs.08189FP] [PMID: 19151545]
[226]
Al-Malki AL, Abo-Golayel MK, Abo-Elnaga G, Al-Beshri H. Hepatoprotective effect of dandelion (Taraxacum officinale) against induced chronic liver cirrhosis. J Med Plants Res 2013; 7(20): 1494-505.
[227]
Martinez M, Poirrier P, Chamy R, et al. Taraxacum officinale and related species-An ethnopharmacological review and its potential as a commercial medicinal plant. J Ethnopharmacol 2015; 169: 244-62.
[http://dx.doi.org/10.1016/j.jep.2015.03.067] [PMID: 25858507]
[228]
Moon YJ, Wang X, Morris ME. Dietary flavonoids: Effects on xenobiotic and carcinogen metabolism. Toxicol In Vitro 2006; 20(2): 187-210.
[http://dx.doi.org/10.1016/j.tiv.2005.06.048] [PMID: 16289744]
[229]
Hfaiedh M, Brahmi D, Zourgui L. Hepatoprotective effect of Taraxacum officinale leaf extract on sodium dichromate-induced liver injury in rats. Environ Toxicol 2016; 31(3): 339-49.
[http://dx.doi.org/10.1002/tox.22048] [PMID: 25270677]
[230]
Pinelli P, Ieri F, Vignolini P, Bacci L, Baronti S, Romani A. Extraction and HPLC analysis of phenolic compounds in leaves, stalks, and textile fibers of Urtica dioica L. J Agric Food Chem 2008; 56(19): 9127-32.
[http://dx.doi.org/10.1021/jf801552d] [PMID: 18778029]
[231]
Devkota HP, Paudel KR, Khanal S, et al. Stinging nettle (Urtica dioica L.): Nutritional composition, bioactive compounds, and food functional properties. Molecules 2022; 27(16): 5219.
[http://dx.doi.org/10.3390/molecules27165219] [PMID: 36014458]
[232]
Grauso L, de Falco B, Lanzotti V, Motti R. Stinging nettle, Urtica dioica L.: Botanical, phytochemical and pharmacological overview. Phytochem Rev 2020; 19(6): 1341-77.
[http://dx.doi.org/10.1007/s11101-020-09680-x]
[233]
Roschek B Jr, Fink RC, McMichael M, Alberte RS. Nettle extract (Urtica dioica) affects key receptors and enzymes associated with allergic rhinitis. Phytother Res 2009; 23(7): 920-6.
[http://dx.doi.org/10.1002/ptr.2763] [PMID: 19140159]
[234]
Akbay P, Basaran AA, Undeger U, Basaran N. In vitro immunomodulatory activity of flavonoid glycosides from Urtica dioica L. Phytother Res 2003; 17(1): 34-7.
[http://dx.doi.org/10.1002/ptr.1068] [PMID: 12557244]
[235]
Randall C, Meethan K, Randall H, Dobbs F. Nettle sting of Urtica dioica for joint pain - an exploratory study of this complementary therapy. Complement Ther Med 1999; 7(3): 126-31.
[http://dx.doi.org/10.1016/S0965-2299(99)80119-8] [PMID: 10581821]
[236]
Upton R. Stinging nettles leaf (Urtica dioica L.): Extraordinary vegetable medicine. J Herb Med 2013; 3(1): 9-38.
[http://dx.doi.org/10.1016/j.hermed.2012.11.001]
[237]
Daoudi A, Benboubker H, Bousta D, Aarab L. Screening of fourteen, Moroccan medicinal plants for immunomodulating activities. Moroccan J Biol 2008; 1: 24-30.
[238]
Viktorova J, Jandova Z, Madlenakova M, et al. Native phytoremediation potential of Urtica dioica for removal of PCBs and heavy metals can be improved by genetic manipulations using constitutive CaMV 35S promoter. PLoS One 2016; 11(12): e0167927.
[http://dx.doi.org/10.1371/journal.pone.0167927] [PMID: 27930707]
[239]
Verma DK, Gupta AP, Dhakeray R. Removal of heavy metals from whole sphere by plants working as bioindicators–a review. Basic Res. J Pharm Sci 2011; 1: 1-7.
[240]
Najafipour F, Rahimi AO, Mobaseri M, Agamohamadzadeh N, Nikoo A, Aliasgharzadeh A. Therapeutic effects of stinging nettle (Urtica dioica) in women with Hyperandrogenism. Int J Curr Res Acad Rev 2014; 2(7): 153-60.
[241]
El OI, Tartouga MA, Loucif OR, Naimi D. Antioxidant and hepatoprotective effect of Urtica dioica extract against N-nitroso methyl urea induced injuries in mice. J Pharmacogn Phytother 2017; 9(2): 19-23.
[http://dx.doi.org/10.5897/JPP2016.0389]
[242]
Uyar A, Yener Z, Dogan A. Protective effects of Urtica dioica seed extract in aflatoxicosis: Histopathological and biochemical findings. Br Poult Sci 2016; 57(2): 235-45.
[http://dx.doi.org/10.1080/00071668.2015.1129664] [PMID: 26947348]
[243]
Vukics V, Kery A, Bonn GK, Guttman A. Major flavonoid components of heartsease (Viola tricolor L.) and their antioxidant activities. Anal Bioanal Chem 2008; 390(7): 1917-25.
[http://dx.doi.org/10.1007/s00216-008-1885-3] [PMID: 18259733]
[244]
Koike A, Barreira JCM, Barros L, Santos-Buelga C, Villavicencio ALCH, Ferreira ICFR. Edible flowers of Viola tricolor L. as a new functional food: Antioxidant activity, individual phenolics and effects of gamma and electron-beam irradiation. Food Chem 2015; 179: 6-14.
[http://dx.doi.org/10.1016/j.foodchem.2015.01.123] [PMID: 25722133]
[245]
Carnat AP, Carnat A, Fraisse D, et al. Violarvensin, a new flavone di-C-glycoside from Viola arvensis. J Nat Prod 1998; 61(2): 272-4.
[http://dx.doi.org/10.1021/np9701485] [PMID: 9548860]
[246]
Karim N, Khan I, Abdelhalim A, Khan A, Halim SA. Antidepressant potential of novel flavonoids derivatives from sweet violet (Viola odorata L.): Pharmacological, biochemical and computational evidences for possible involvement of serotonergic mechanism. Fitoterapia 2018; 128: 148-61.
[http://dx.doi.org/10.1016/j.fitote.2018.05.016] [PMID: 29775777]
[247]
Anca T, Philippe V, Ilioara O, Mircea T. Composition of essential oils of Viola tricolor and V. arvensis from Romania. Chem Nat Compd 2009; 45(1): 91-2.
[http://dx.doi.org/10.1007/s10600-009-9244-y]
[248]
Feyzabadi Z, Jafari F, Kamali SH, et al. Efficacy of Viola odorata in treatment of chronic insomnia. Iran Red Crescent Med J 2014; 16(12): e17511.
[http://dx.doi.org/10.5812/ircmj.17511] [PMID: 25763239]
[249]
Park S, Yoo KO, Marcussen T, et al. Cyclotide evolution: Insights from the analyses of their precursor sequences, structures and distribution in violets (viola). Front Plant Sci 2017; 8: 2058.
[http://dx.doi.org/10.3389/fpls.2017.02058] [PMID: 29326730]
[250]
Lindholm P, Göransson U, Johansson S, et al. Cyclotides: A novel type of cytotoxic agents. Mol Cancer Ther 2002; 1(6): 365-9.
[PMID: 12477048]
[251]
Svangård E, Burman R, Gunasekera S, Lövborg H, Gullbo J, Göransson U. Mechanism of action of cytotoxic cyclotides: Cycloviolacin O2 disrupts lipid membranes. J Nat Prod 2007; 70(4): 643-7.
[http://dx.doi.org/10.1021/np070007v] [PMID: 17378610]
[252]
Parsley NC, Kirkpatrick CL, Crittenden CM, et al. PepSAVI-MS reveals anticancer and antifungal cycloviolacins in Viola odorata. Phytochemistry 2018; 152: 61-70.
[http://dx.doi.org/10.1016/j.phytochem.2018.04.014] [PMID: 29734037]
[253]
Pränting M, Lööv C, Burman R, Göransson U, Andersson DI. The cyclotide cycloviolacin O2 from Viola odorata has potent bactericidal activity against Gram-negative bacteria. J Antimicrob Chemother 2010; 65(9): 1964-71.
[http://dx.doi.org/10.1093/jac/dkq220] [PMID: 20558471]
[254]
Kumar K, Sharma YP, Manhas RK, Bhatia H. Ethnomedicinal plants of Shankaracharya Hill, Srinagar, J&K, India. J Ethnopharmacol 2015; 170: 255-74.
[http://dx.doi.org/10.1016/j.jep.2015.05.021] [PMID: 26008867]
[255]
Feyzabadi Z, Ghorbani F, Vazani Y, Zarshenas MM. A critical review on phytochemistry, pharmacology of Viola odorata L. and related multipotential products in traditional Persian medicine. Phytother Res 2017; 31(11): 1669-75.
[http://dx.doi.org/10.1002/ptr.5909] [PMID: 28948657]
[256]
Toiu A, Muntean E, Oniga I, Voştinaru O, Tămaş M. Pharmacognostic research on Viola tricolor L. (Violaceae). Rev Med Chir Soc Med Nat Iasi 2009; 113(1): 264-7.
[PMID: 21491816]
[257]
Vishal A, Parveen K, Pooja S, Nagappan K. Diuretic, laxative and toxicity studies of Viola odorata aerial parts. Pharmacol Online 2008; p. 1.
[258]
Kannappan N, Diwan A, Saini P, Singh S, Antil V, Kumar P. Evaluation of the analgesic activity of Viola odorata aerial parts in rats. J Natur Pharmaceut 2011; 2(1): 24.
[http://dx.doi.org/10.4103/2229-5119.78493]
[259]
Witkowska-Banaszczak E, Bylka W, Matławska I, Goślińska O, Muszyński Z. Antimicrobial activity of Viola tricolor herb. Fitoterapia 2005; 76(5): 458-61.
[http://dx.doi.org/10.1016/j.fitote.2005.03.005] [PMID: 15893888]
[260]
Gautam SS, Navneet , Kumar S. The antibacterial and phytochemical aspects of Viola odorata Linn. extracts against respiratory tract pathogens. Proc Natl Acad Sci, India, Sect B Biol Sci 2012; 82(4): 567-72.
[http://dx.doi.org/10.1007/s40011-012-0064-7]
[261]
Harati E, Bahrami M, Razavi A, et al. Effects of Viola tricolor flower hydroethanolic extract on lung inflammation in a mouse model of chronic asthma. Iran J Allergy Asthma Immunol 2018; 17(5): 409-17.
[http://dx.doi.org/10.18502/ijaai.v17i5.299] [PMID: 30518183]
[262]
Siddiqi HS, Mehmood MH, Rehman NU, Gilani AH. Studies on the antihypertensive and antidyslipidemic activities of Viola odorata leaves extract. Lipids Health Dis 2012; 11(1): 6.
[http://dx.doi.org/10.1186/1476-511X-11-6] [PMID: 22233644]
[263]
Alipanah H, Bigdeli MR, Esmaeili MA. Inhibitory effect of Viola odorata extract on tumor growth and metastasis in 4T1 breast cancer model. Iran J Pharm Res 2018; 17(1): 276-91.
[PMID: 29755559]
[264]
Qasemzadeh MJ, Sharifi H, Hamedanian M, et al. The effect of Viola odorata flower syrup on the cough of children with asthma. J Evid Based Complementary Altern Med 2015; 20(4): 287-91.
[http://dx.doi.org/10.1177/2156587215584862] [PMID: 25954025]
[265]
Hellinger R, Koehbach J, Fedchuk H, et al. Immunosuppressive activity of an aqueous Viola tricolor herbal extract. J Ethnopharmacol 2014; 151(1): 299-306.
[http://dx.doi.org/10.1016/j.jep.2013.10.044] [PMID: 24216163]
[266]
Mousavi SH, Naghizade B, Pourgonabadi S, Ghorbani A. Protective effect of Viola tricolor and Viola odorata extracts on serum/glucose deprivation-induced neurotoxicity: Role of reactive oxygen species. Avicenna J Phytomed 2016; 6(4): 434-41.
[PMID: 27516984]
[267]
Qadir MI, Ali M, Ali M, Saleem M, Hanif M. Hepatoprotective activity of aqueous methanolic extract of Viola odorata against paracetamol-induced liver injury in mice. Bangladesh J Pharmacol 2014; 9(2): 198-202.
[http://dx.doi.org/10.3329/bjp.v9i2.18049]
[268]
Boonthai P, Noikotr K, Saemram N, et al. Formulations for effective detoxification derived from three medicinal plants: Thunbergia laurifolia, Clerodendrum disparifolium and Rotheca serrata. Curr Pharm Biotechnol 2022; 23(1): 140-7.
[http://dx.doi.org/10.2174/1389201022666210208145605] [PMID: 33557734]
[269]
Gherbon A, Frandes M, Timar R, Nicula M. Beneficial effects of Aloe ferox on lipid profile, blood pressure, and glycemic control in obese persons. Medicine 2021; 100(50): e28336.
[http://dx.doi.org/10.1097/MD.0000000000028336] [PMID: 34918714]
[270]
Koo HJ, Lee KR, Kim HS, Lee BM. Detoxification effects of aloe polysaccharide and propolis on the urinary excretion of metabolites in smokers. Food Chem Toxicol 2019; 130: 99-108.
[http://dx.doi.org/10.1016/j.fct.2019.05.029] [PMID: 31112706]
[271]
Wieczorek PP, Hudz N, Yezerska O, et al. Chemical variability and pharmacological potential of propolis as a source for the development of new pharmaceutical products. Molecules 2022; 27(5): 1600.
[http://dx.doi.org/10.3390/molecules27051600] [PMID: 35268700]
[272]
Kim IS, Hwang CW, Yang WS, Kim CH. Multiple antioxidative and bioactive molecules of oats (Avena sativa L.) in human health. Antioxidants 2021; 10(9): 1454.
[http://dx.doi.org/10.3390/antiox10091454] [PMID: 34573086]
[273]
Gupta S, Mishra KP, Gupta R, Singh SB. Andrographolide – A prospective remedy for chikungunya fever and viral arthritis. Int Immunopharmacol 2021; 99: 108045.
[http://dx.doi.org/10.1016/j.intimp.2021.108045] [PMID: 34435582]
[274]
Walker KF, Chappell LC, Hague WM, Middleton P, Thornton JG. Pharmacological interventions for treating intrahepatic cholestasis of pregnancy. Cochrane Database Syst Rev 2020; 7(7): CD000493.
[PMID: 32716060]
[275]
Obert J, Pearlman M, Obert L, Chapin S. Popular weight loss strategies: A review of four weight loss techniques. Curr Gastroenterol Rep 2017; 19(12): 61.
[http://dx.doi.org/10.1007/s11894-017-0603-8] [PMID: 29124370]
[276]
Nestle M. Broccoli sprouts as inducers of carcinogen-detoxifying enzyme systems: Clinical, dietary, and policy implications. Proc Natl Acad Sci USA 1997; 94(21): 11149-51.
[http://dx.doi.org/10.1073/pnas.94.21.11149] [PMID: 9326574]
[277]
Gasmi A, Gasmi Benahmed A, Shanaida M, et al. Anticancer activity of broccoli, its organosulfur and polyphenolic compounds. Crit Rev Food Sci Nutr 2023; 2023: 1-19.
[http://dx.doi.org/10.1080/10408398.2023.2195493] [PMID: 37129118]
[278]
Soares A, de Sá-Nakanishi A, Bracht A, et al. Hepatoprotective effects of mushrooms. Molecules 2013; 18(7): 7609-30.
[http://dx.doi.org/10.3390/molecules18077609] [PMID: 23884116]
[279]
Chiu HF, Fu HY, Lu YY, et al. Triterpenoids and polysaccharide peptides-enriched Ganoderma lucidum: A randomized, double-blind placebo-controlled crossover study of its antioxidation and hepatoprotective efficacy in healthy volunteers. Pharm Biol 2017; 55(1): 1041-6.
[http://dx.doi.org/10.1080/13880209.2017.1288750] [PMID: 28183232]
[280]
Xu GB, Xiao YH, Zhang QY, Zhou M, Liao SG. Hepatoprotective natural triterpenoids. Eur J Med Chem 2018; 145: 691-716.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.011] [PMID: 29353722]
[281]
Limaye A, Yu RC, Chou CC, Liu JR, Cheng KC. Protective and detoxifying effects conferred by dietary selenium and curcumin against AFB1-mediated toxicity in livestock: A review. Toxins 2018; 10(1): 25.
[http://dx.doi.org/10.3390/toxins10010025] [PMID: 29301315]
[282]
Ateş MB, Ortatatli M. The effects of Nigella sativa seeds and thymoquinone on aflatoxin phase-2 detoxification through glutathione and glutathione-S-transferase alpha-3, and the relationship between aflatoxin B1-DNA adducts in broilers. Toxicon 2021; 193: 86-92.
[http://dx.doi.org/10.1016/j.toxicon.2021.01.020] [PMID: 33581172]
[283]
Debersac P, Heydel J-M, Amiot MJ, et al. Induction of cytochrome P450 and/or detoxication enzymes by various extracts of rosemary: Description of specific patterns. Food Chem Toxicol 2001; 39(9): 907-18.
[284]
Bai QY, Tao SM, Tian JH, Cao CR. Progress of research on effect and mechanism of Scutellariae radix on preventing liver diseases. Zhongguo Zhongyao Zazhi 2020; 45(12): 2808-16.
[PMID: 32627454]
[285]
Mboumba Bouassa RS, Sebastiani G, Di Marzo V, Jenabian MA, Costiniuk CT. Cannabinoids and chronic liver diseases. Int J Mol Sci 2022; 23(16): 9423.
[http://dx.doi.org/10.3390/ijms23169423] [PMID: 36012687]
[286]
Zhao W, Bian Y, Wang Q, et al. Blueberry-derived exosomes-like nanoparticles ameliorate nonalcoholic fatty liver disease by attenuating mitochondrial oxidative stress. Acta Pharmacol Sin 2022; 43(3): 645-58.
[http://dx.doi.org/10.1038/s41401-021-00681-w] [PMID: 33990765]
[287]
M Soliman S, Mosallam S, Mamdouh MA, Hussein MA, M Abd El-Halim S. Design and optimization of cranberry extract loaded bile salt augmented liposomes for targeting of MCP-1/STAT3/VEGF signaling pathway in DMN-intoxicated liver in rats. Drug Deliv 2022; 29(1): 427-39.
[http://dx.doi.org/10.1080/10717544.2022.2032875] [PMID: 35098843]
[288]
Tzankova V, Aluani D, Kondeva-Burdina M, et al. Hepatoprotective and antioxidant activity of quercetin loaded chitosan/alginate particles in vitro and in vivo in a model of paracetamol-induced toxicity. Biomed Pharmacother 2017; 92: 569-79.
[http://dx.doi.org/10.1016/j.biopha.2017.05.008] [PMID: 28577496]
[289]
Shukla Y, Kalra N. Cancer chemoprevention with garlic and its constituents. Cancer Lett 2007; 247(2): 167-81.
[http://dx.doi.org/10.1016/j.canlet.2006.05.009] [PMID: 16793203]
[290]
Zhuang X, Deng ZB, Mu J, et al. Ginger-derived nanoparticles protect against alcohol-induced liver damage. J Extracell Vesicles 2015; 4(1): 28713.
[http://dx.doi.org/10.3402/jev.v4.28713] [PMID: 26610593]
[291]
Lee HS, Li L, Kim HK, et al. The protective effects of Curcuma longa Linn. extract on carbon tetrachloride-induced hepatotoxicity in rats via upregulation of Nrf2. J Microbiol Biotechnol 2010; 20(9): 1331-8.
[http://dx.doi.org/10.4014/jmb.1002.03010] [PMID: 20890099]
[292]
Quispe C, Cruz-Martins N, Manca ML, et al. Nano-derived therapeutic formulations with curcumin in inflammation-related diseases. Oxid Med Cell Longev 2021; 2021: 1-15.
[http://dx.doi.org/10.1155/2021/3149223] [PMID: 34584616]
[293]
Zhou W, Liu Q, Zang X, et al. Combination use of tolfenamic acid with curcumin improves anti-inflammatory activity and reduces toxicity in mice. J Food Biochem 2020; 44(6): e13240.
[http://dx.doi.org/10.1111/jfbc.13240] [PMID: 32281661]
[294]
Predes FS, Ruiz ALTG, Carvalho JE, Foglio MA, Dolder H. Antioxidative and in vitro antiproliferative activity of Arctium lappa root extracts. BMC Complement Altern Med 2011; 11(1): 25.
[http://dx.doi.org/10.1186/1472-6882-11-25] [PMID: 21429215]
[295]
Küçükgergin C, Aydın AF, Özdemirler-Erata G, Mehmetçik G, Koçak-Toker N, Uysal M. Effect of artichoke leaf extract on hepatic and cardiac oxidative stress in rats fed on high cholesterol diet. Biol Trace Elem Res 2010; 135(1-3): 264-74.
[http://dx.doi.org/10.1007/s12011-009-8484-9] [PMID: 19652921]
[296]
Küskü-Kiraz Z, Mehmetçik G, Doǧru-Abbasoǧlu S, Uysal M. Artichoke leaf extract reduces oxidative stress and lipoprotein dyshomeostasis in rats fed on high cholesterol diet. Phytother Res 2010; 24(4): 565-70.
[http://dx.doi.org/10.1002/ptr.2985] [PMID: 19777605]
[297]
Harish R, Chauhan JB. Antioxidant, antimicrobial and cytoprotective action of ethanolic extract of Glycyrrhiza glabra root against ccl4 induced damage on Saccharomyces cerevisiae. J Pharmacogn Phytochem 2019; 8(3): 247-53.
[298]
Akaberi M, Sahebkar A, Azizi N, Emami SA. Everlasting flowers: Phytochemistry and pharmacology of the genus Helichrysum. Ind Crops Prod 2019; 138: 111471.
[http://dx.doi.org/10.1016/j.indcrop.2019.111471]
[299]
Shakya P, Marslin G, Siram K, Beerhues L, Franklin G. Elicitation as a tool to improve the profiles of high-value secondary metabolites and pharmacological properties of Hypericum perforatum. J Pharm Pharmacol 2018; 71(1): 70-82.
[http://dx.doi.org/10.1111/jphp.12743] [PMID: 28523644]
[300]
Diukendjieva A, Alov P, Tsakovska I, et al. In vitro and in silico studies of the membrane permeability of natural flavonoids from Silybum marianum (L.) Gaertn. and their derivatives. Phytomedicine 2019; 53: 79-85.
[http://dx.doi.org/10.1016/j.phymed.2018.09.001] [PMID: 30668415]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy