Hydrogen Sulfide: Physiological Roles and Therapeutic Implications against COVID-19 | Bentham Science
Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Hydrogen Sulfide: Physiological Roles and Therapeutic Implications against COVID-19

Author(s): Sajad Abolfazli, Nima Ebrahimi, Etekhar Morabi, Mohammad Amin Asgari Yazdi, Gokhan Zengin, Thozhukat Sathyapalan, Tannaz Jamialahmadi and Amirhossein Sahebkar*

Volume 31, Issue 21, 2024

Published on: 26 June, 2023

Page: [3132 - 3148] Pages: 17

DOI: 10.2174/0929867330666230502111227

Price: $65

Open Access Journals Promotions 2
Abstract

The COVID-19 pandemic due to severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) poses a major menace to economic and public health worldwide. Angiotensin-converting enzyme 2 (ACE2) and transmembrane protease serine 2 (TMPRSS2) are two host proteins that play an essential function in the entry of SARS-- COV-2 into host cells. Hydrogen sulfide (H2S), a new gasotransmitter, has been shown to protect the lungs from potential damage through its anti-inflammatory, antioxidant, antiviral, and anti-aging effects. It is well known that H2S is crucial in controlling the inflammatory reaction and the pro-inflammatory cytokine storm. Therefore, it has been suggested that some H2S donors may help treat acute lung inflammation. Furthermore, recent research illuminates a number of mechanisms of action that may explain the antiviral properties of H2S. Some early clinical findings indicate a negative correlation between endogenous H2S concentrations and COVID-19 intensity. Therefore, reusing H2S-releasing drugs could represent a curative option for COVID-19 therapy.

Keywords: Hydrogen sulfide, cytokine storm, anti-inflammatory, anti-viral, COVID-19, coronavirus.

[1]
Citi, V.; Martelli, A.; Brancaleone, V.; Brogi, S.; Gojon, G.; Montanaro, R.; Morales, G.; Testai, L.; Calderone, V. Anti-inflammatory and antiviral roles of hydrogen sulfide: Rationale for considering H2S donors in COVID-19 therapy. Br. J. Pharmacol., 2020, 177(21), 4931-4941.
[http://dx.doi.org/10.1111/bph.15230] [PMID: 32783196]
[2]
Dattilo, M. The role of host defences in Covid 19 and treatments thereof. Mol. Med., 2020, 26(1), 90.
[http://dx.doi.org/10.1186/s10020-020-00216-9] [PMID: 32993497]
[3]
Noori, M.; Nejadghaderi, S.A.; Arshi, S.; Carson-Chahhoud, K.; Ansarin, K.; Kolahi, A.A.; Safiri, S. Potency of BNT162b2 and mRNA-1273 vaccine-induced neutralizing antibodies against severe acute respiratory syndrome-CoV-2 variants of concern: A systematic review of in vitro studies. Rev. Med. Virol., 2022, 32(2), e2277.
[http://dx.doi.org/10.1002/rmv.2277] [PMID: 34286893]
[4]
COVID-19 weekly epidemiological update, 124 ed.; World Health Organization, 2023.
[5]
Kim, S.Y.; Yeniova, A.Ö. Global, regional, and national incidence and mortality of COVID-19 in 237 countries and territories, January 2022: A systematic analysis for World Health Organization COVID-19 Dashboard. Life Cycle, 2022, 2, e10.
[http://dx.doi.org/10.54724/lc.2022.e10]
[6]
Hoffmann, M; Kleine-Weber, H; Schroeder, S; Krüger, N; Herrler, T; Erichsen, S SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. cell, 2020, 181(2), 271-280.e8..
[7]
Sims, A.C.; Baric, R.S.; Yount, B.; Burkett, S.E.; Collins, P.L.; Pickles, R.J. Severe acute respiratory syndrome coronavirus infection of human ciliated airway epithelia: Role of ciliated cells in viral spread in the conducting airways of the lungs. J. Virol., 2005, 79(24), 15511-15524.
[http://dx.doi.org/10.1128/JVI.79.24.15511-15524.2005] [PMID: 16306622]
[8]
Mason, R.J. Pathogenesis of COVID-19 from a cell biology perspective. Eur Respir J, 2020, 55(4), 2000607.
[http://dx.doi.org/10.1183/13993003.00607-2020]
[9]
Xu, Z.; Shi, L.; Wang, Y.; Zhang, J.; Huang, L.; Zhang, C.; Liu, S.; Zhao, P.; Liu, H.; Zhu, L.; Tai, Y.; Bai, C.; Gao, T.; Song, J.; Xia, P.; Dong, J.; Zhao, J.; Wang, F.S. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir. Med., 2020, 8(4), 420-422.
[http://dx.doi.org/10.1016/S2213-2600(20)30076-X] [PMID: 32085846]
[10]
Cascella, M.; Rajnik, M.; Aleem, A.; Dulebohn, S.C.; Di Napoli, R. Features, evaluation, and treatment of coronavirus (COVID-19); Statpearls, 2022.
[11]
Yazdanpanah, F.; Hamblin, M.R.; Rezaei, N. The immune system and COVID-19: Friend or foe? Life Sci., 2020, 256, 117900.
[http://dx.doi.org/10.1016/j.lfs.2020.117900] [PMID: 32502542]
[12]
Yang, A.P.; Liu, J.; Tao, W.; Li, H. The diagnostic and predictive role of NLR, d-NLR and PLR in COVID-19 patients. Int. Immunopharmacol., 2020, 84, 106504.
[http://dx.doi.org/10.1016/j.intimp.2020.106504] [PMID: 32304994]
[13]
Fang, Y.; Zhang, H.; Xie, J.; Lin, M.; Ying, L.; Pang, P.; Ji, W. Sensitivity of chest CT for COVID-19: Comparison to RT-PCR. Radiology, 2020, 296(2), E115-E117.
[http://dx.doi.org/10.1148/radiol.2020200432] [PMID: 32073353]
[14]
Deja-Sikora, E.; Gołębiewski, M.; Kalwasińska, A.; Krawiec, A.; Kosobucki, P.; Walczak, M. Comamonadaceae OTU as a remnant of an ancient microbial community in sulfidic waters. Microb. Ecol., 2019, 78(1), 85-101.
[http://dx.doi.org/10.1007/s00248-018-1270-5] [PMID: 30341500]
[15]
Brglez, Š. Risk assessment of toxic hydrogen sulfide concentrations on swine farms. J. Clean. Prod., 2021, 312, 127746.
[http://dx.doi.org/10.1016/j.jclepro.2021.127746]
[16]
Wu, DD; Wang, DY; Li, HM; Guo, JC; Duan, SF; Ji, XY Hydrogen sulfide as a novel regulatory factor in liver health and disease. Oxid Med Cell Longev, 2019, 2019, 3831713.
[http://dx.doi.org/10.1155/2019/3831713]
[17]
Tomasova, L.; Konopelski, P.; Ufnal, M. Gut bacteria and hydrogen sulfide: the new old players in circulatory system homeostasis. Molecules, 2016, 21(11), 1558.
[http://dx.doi.org/10.3390/molecules21111558] [PMID: 27869680]
[18]
Aroca, A.; Gotor, C.; Bassham, D.C.; Romero, L.C. Hydrogen sulfide: From a toxic molecule to a key molecule of cell life. Antioxidants, 2020, 9(7), 621.
[http://dx.doi.org/10.3390/antiox9070621] [PMID: 32679888]
[19]
Munteanu, C.; Dogaru, G.; Rotariu, M.; Onose, G. Therapeutic gases used in balneotherapy and rehabilitation medicine - scientific relevance in the last ten years (2011 – 2020) - Synthetic literature review. Balneo PRM Res. J., 12(2)
[20]
Cao, X.; Ding, L.; Xie, Z.; Yang, Y.; Whiteman, M.; Moore, P.K.; Bian, J.S. A review of hydrogen sulfide synthesis, metabolism, and measurement: Is modulation of hydrogen sulfide a novel therapeutic for cancer? Antioxid. Redox Signal., 2019, 31(1), 1-38.
[http://dx.doi.org/10.1089/ars.2017.7058] [PMID: 29790379]
[21]
Mys, L.A.; Strutynska, N.A.; Goshovska, Y.V.; Sagach, V.F. Stimulation of the endogenous hydrogen sulfide synthesis suppresses oxidative–nitrosative stress and restores endothelial-dependent vasorelaxation in old rats. Can. J. Physiol. Pharmacol., 2020, 98(5), 275-281.
[http://dx.doi.org/10.1139/cjpp-2019-0411] [PMID: 31846354]
[22]
Zhang, Q.; Liu, Y.; Jia, X.; He, Y.; Zhang, R.; Guan, T.; Zhang, Q.; Yang, Y.; Liu, Y. Fluorescence turn off–on mechanism of selective chemosensor for hydrogen sulfide: A theoretical perspective. J. Mol. Liq., 2021, 338, 116679.
[http://dx.doi.org/10.1016/j.molliq.2021.116679]
[23]
Panthi, S.; Manandhar, S.; Gautam, K. Hydrogen sulfide, nitric oxide, and neurodegenerative disorders. Transl. Neurodegener., 2018, 7(1), 3.
[http://dx.doi.org/10.1186/s40035-018-0108-x] [PMID: 29456842]
[24]
Malagrinò, F; Zuhra, K; Mascolo, L; Mastronicola, D; Vicente, JB; Forte, E Hydrogen sulfide oxidation: Adaptive changes in mitochondria of SW480 colorectal cancer cells upon exposure to hypoxia. Oxid. Med. Cell. Longev., 2019, 2019
[http://dx.doi.org/10.1155/2019/8102936]
[25]
Szabo, C. Hydrogen sulfide, an endogenous stimulator of mitochondrial function in cancer cells. Cells, 2021, 10(2), 220.
[http://dx.doi.org/10.3390/cells10020220] [PMID: 33499368]
[26]
Xiao, Q.; Ying, J.; Xiang, L.; Zhang, C. The biologic effect of hydrogen sulfide and its function in various diseases. Medicine, 2018, 97(44), e13065.
[http://dx.doi.org/10.1097/MD.0000000000013065] [PMID: 30383685]
[27]
Wang, R. Physiological implications of hydrogen sulfide: a whiff exploration that blossomed. Physiol. Rev., 2012, 92(2), 791-896.
[http://dx.doi.org/10.1152/physrev.00017.2011] [PMID: 22535897]
[28]
Lisjak, M.; Srivastava, N.; Teklic, T.; Civale, L.; Lewandowski, K.; Wilson, I.; Wood, M.E.; Whiteman, M.; Hancock, J.T. A novel hydrogen sulfide donor causes stomatal opening and reduces nitric oxide accumulation. Plant Physiol. Biochem., 2010, 48(12), 931-935.
[http://dx.doi.org/10.1016/j.plaphy.2010.09.016] [PMID: 20970349]
[29]
Li, Z.G. Hydrogen sulfide: A multifunctional gaseous molecule in plants. Russ. J. Plant Physiol., 2013, 60(6), 733-740.
[http://dx.doi.org/10.1134/S1021443713060058]
[30]
Powell, C.R.; Dillon, K.M.; Matson, J.B. A review of hydrogen sulfide (H2S) donors: Chemistry and potential therapeutic applications. Biochem. Pharmacol., 2018, 149, 110-123.
[http://dx.doi.org/10.1016/j.bcp.2017.11.014] [PMID: 29175421]
[31]
Perlot, T.; Penninger, J.M. ACE2 – From the renin–angiotensin system to gut microbiota and malnutrition. Microbes Infect., 2013, 15(13), 866-873.
[http://dx.doi.org/10.1016/j.micinf.2013.08.003] [PMID: 23962453]
[32]
Galanopoulos, M.; Gkeros, F.; Doukatas, A.; Karianakis, G.; Pontas, C.; Tsoukalas, N.; Viazis, N.; Liatsos, C.; Mantzaris, G.J. COVID-19 pandemic: Pathophysiology and manifestations from the gastrointestinal tract. World J. Gastroenterol., 2020, 26(31), 4579-4588.
[http://dx.doi.org/10.3748/wjg.v26.i31.4579] [PMID: 32884218]
[33]
Livanos, A.E.; Jha, D.; Cossarini, F.; Gonzalez-Reiche, A.S.; Tokuyama, M.; Aydillo, T. Gastrointestinal involvement attenuates COVID-19 severity and mortality. MedRxiv, 2020.
[http://dx.doi.org/10.1101/2020.09.07.20187666]
[34]
Xiao, F; Tang, M; Zheng, X; Liu, Y; Li, X; Shan, H Evidence for gastrointestinal infection of SARS-CoV-2. Gastroenterology, 2020, 158(6), 1831-1833. e3.
[35]
Massironi, S.; Viganò, C.; Dioscoridi, L.; Filippi, E.; Pagliarulo, M.; Manfredi, G.; Conti, C.B.; Signorelli, C.; Redaelli, A.E.; Bonato, G.; Iiritano, E.; Frego, R.; Zucchini, N.; Ungari, M.; Pedaci, M.; Bono, F.; Di Bella, C.; Buscarini, E.; Mutignani, M.; Penagini, R.; Dinelli, M.E.; Invernizzi, P. Endoscopic findings in patients infected with 2019 novel coronavirus in Lombardy, Italy. Clin. Gastroenterol. Hepatol., 2020, 18(10), 2375-2377.
[http://dx.doi.org/10.1016/j.cgh.2020.05.045] [PMID: 32480008]
[36]
Hunt, R.H.; East, J.E.; Lanas, A.; Malfertheiner, P.; Satsangi, J.; Scarpignato, C.; Webb, G.J. COVID-19 and gastrointestinal disease: Implications for the gastroenterologist. Dig. Dis., 2021, 39(2), 119-139.
[http://dx.doi.org/10.1159/000512152] [PMID: 33040064]
[37]
Bourgonje, A.R.; Abdulle, A.E.; Timens, W.; Hillebrands, J.L.; Navis, G.J.; Gordijn, S.J.; Bolling, M.C.; Dijkstra, G.; Voors, A.A.; Osterhaus, A.D.M.E.; Voort, P.H.J.; Mulder, D.J.; Goor, H. Angiotensin-converting enzyme 2 (ACE2), SARS-CoV-2 and the pathophysiology of coronavirus disease 2019 (COVID-19). J. Pathol., 2020, 251(3), 228-248.
[http://dx.doi.org/10.1002/path.5471] [PMID: 32418199]
[38]
Cao, X. COVID-19: Immunopathology and its implications for therapy. Nat. Rev. Immunol., 2020, 20(5), 269-270.
[http://dx.doi.org/10.1038/s41577-020-0308-3] [PMID: 32273594]
[39]
Fara, A.; Mitrev, Z.; Rosalia, R.A.; Assas, B.M. Cytokine storm and COVID-19: A chronicle of pro-inflammatory cytokines. Open Biol., 2020, 10(9), 200160.
[http://dx.doi.org/10.1098/rsob.200160] [PMID: 32961074]
[40]
Mehta, P.; McAuley, D.F.; Brown, M.; Sanchez, E.; Tattersall, R.S.; Manson, J.J. COVID-19: Consider cytokine storm syndromes and immunosuppression. Lancet, 2020, 395(10229), 1033-1034.
[http://dx.doi.org/10.1016/S0140-6736(20)30628-0] [PMID: 32192578]
[41]
Li, Y.; Xiao, S.Y. Hepatic involvement in COVID-19 patients: Pathology, pathogenesis, and clinical implications. J. Med. Virol., 2020, 92(9), 1491-1494.
[http://dx.doi.org/10.1002/jmv.25973] [PMID: 32369204]
[42]
Bloom, P.P.; Meyerowitz, E.A.; Reinus, Z.; Daidone, M.; Gustafson, J.; Kim, A.Y.; Schaefer, E.; Chung, R.T. Liver biochemistries in hospitalized patients with COVID-19. Hepatology, 2021, 73(3), 890-900.
[http://dx.doi.org/10.1002/hep.31326] [PMID: 32415860]
[43]
Cai, Q.; Huang, D.; Yu, H.; Zhu, Z.; Xia, Z.; Su, Y.; Li, Z.; Zhou, G.; Gou, J.; Qu, J.; Sun, Y.; Liu, Y.; He, Q.; Chen, J.; Liu, L.; Xu, L. COVID-19: Abnormal liver function tests. J. Hepatol., 2020, 73(3), 566-574.
[http://dx.doi.org/10.1016/j.jhep.2020.04.006] [PMID: 32298767]
[44]
Paramasivam, A.; Priyadharsini, J.V.; Raghunandhakumar, S.; Elumalai, P. A novel COVID-19 and its effects on cardiovascular disease. Hypertens. Res., 2020, 43(7), 729-730.
[http://dx.doi.org/10.1038/s41440-020-0461-x] [PMID: 32355222]
[45]
Lo Presti, E.; Nuzzo, D.; Al Mahmeed, W.; Al-Rasadi, K.; Al-Alawi, K.; Banach, M.; Banerjee, Y.; Ceriello, A.; Cesur, M.; Cosentino, F.; Firenze, A.; Galia, M.; Goh, S.Y.; Janez, A.; Kalra, S.; Kapoor, N.; Kempler, P.; Lessan, N.; Lotufo, P.; Papanas, N.; Rizvi, A.A.; Sahebkar, A.; Santos, R.D.; Stoian, A.P.; Toth, P.P.; Viswanathan, V.; Rizzo, M. Molecular and pro-inflammatory aspects of COVID-19: The impact on cardiometabolic health. Biochim. Biophys. Acta Mol. Basis Dis., 2022, 1868(12), 166559.
[http://dx.doi.org/10.1016/j.bbadis.2022.166559] [PMID: 36174875]
[46]
Moayed, M.S.; Rahimi-Bashar, F.; Vahedian-Azimi, A.; Sathyapalan, T.; Guest, P.C.; Jamialahmadi, T. Cardiac injury in COVID-19: A systematic review. Adv Exp Med Biol, 2021, 1321, 325-333.
[http://dx.doi.org/10.1007/978-3-030-59261-5_29]
[47]
Saghafi, N.; Rezaee, S.A.; Momtazi-Borojeni, A.A.; Tavasolian, F.; Sathyapalan, T.; Abdollahi, E.; Sahebkar, A. The therapeutic potential of regulatory T cells in reducing cardiovascular complications in patients with severe COVID-19. Life Sci., 2022, 294, 120392.
[http://dx.doi.org/10.1016/j.lfs.2022.120392] [PMID: 35149115]
[48]
Tajbakhsh, A.; Gheibi Hayat, S.M.; Taghizadeh, H.; Akbari, A.; inabadi, M.; Savardashtaki, A.; Johnston, T.P.; Sahebkar, A. COVID-19 and cardiac injury: Clinical manifestations, biomarkers, mechanisms, diagnosis, treatment, and follow up. Expert Rev. Anti Infect. Ther., 2021, 19(3), 345-357.
[http://dx.doi.org/10.1080/14787210.2020.1822737] [PMID: 32921216]
[49]
Vicenzi, M.; Ruscica, M.; Jamialahmadi, T.; Sahebkar, A. Cardiovascular complications of COVID-19: toward better understanding, diagnosis, monitoring and management. Expert Rev. Anti Infect. Ther., 2022, 20(3), 325-326.
[http://dx.doi.org/10.1080/14787210.2021.1964695] [PMID: 34343449]
[50]
Bansal, M. Cardiovascular disease and COVID-19. Diabetes Metab. Syndr., 2020, 14(3), 247-250.
[http://dx.doi.org/10.1016/j.dsx.2020.03.013] [PMID: 32247212]
[51]
P, S.; v, A. COVID-19 and cardiovascular disease. Res. J. Med. Sci, 2020, 8(S1), 69-73.
[http://dx.doi.org/10.17727/JMSR.2020/8S1-8]
[52]
Lakkireddy, D.R.; Chung, M.K.; Gopinathannair, R.; Patton, K.K.; Gluckman, T.J.; Turagam, M.; Cheung, J.; Patel, P.; Sotomonte, J.; Lampert, R.; Han, J.K.; Rajagopalan, B.; Eckhardt, L.; Joglar, J.; Sandau, K.; Olshansky, B.; Wan, E.; Noseworthy, P.A.; Leal, M.; Kaufman, E.; Gutierrez, A.; Marine, J.E.; Wang, P.J.; Russo, A.M. Guidance for cardiac electrophysiology during the COVID-19 pandemic from the heart rhythm society COVID-19 task force; Electrophysiology section of the american college of cardiology; and the electrocardiography and arrhythmias committee of the council on clinical cardiology, American Heart Association. Circulation, 2020, 141(21), e823-e831.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.120.047063] [PMID: 32228309]
[53]
Varkey, J.N.; Frishman, W.H. Arrhythmogenesis and COVID-19. Cardiology, 2021, 29(6), 289-291.
[PMID: 34261901]
[54]
Zanza, C.; Racca, F.; Longhitano, Y.; Piccioni, A.; Franceschi, F.; Artico, M.; Abenavoli, L.; Maiese, A.; Passaro, G.; Volonnino, G.; La Russa, R. Risk management and treatment of coagulation disorders related to COVID-19 infection. Int. J. Environ. Res. Public Health, 2021, 18(3), 1268.
[http://dx.doi.org/10.3390/ijerph18031268] [PMID: 33572570]
[55]
Ronco, C.; Reis, T. Kidney involvement in COVID-19 and rationale for extracorporeal therapies. Nat. Rev. Nephrol., 2020, 16(6), 308-310.
[http://dx.doi.org/10.1038/s41581-020-0284-7] [PMID: 32273593]
[56]
Puelles, V.G.; Lütgehetmann, M.; Lindenmeyer, M.T.; Sperhake, J.P.; Wong, M.N.; Allweiss, L.; Chilla, S.; Heinemann, A.; Wanner, N.; Liu, S.; Braun, F.; Lu, S.; Pfefferle, S.; Schröder, A.S.; Edler, C.; Gross, O.; Glatzel, M.; Wichmann, D.; Wiech, T.; Kluge, S.; Pueschel, K.; Aepfelbacher, M.; Huber, T.B. Multiorgan and renal tropism of SARS-CoV-2. N. Engl. J. Med., 2020, 383(6), 590-592.
[http://dx.doi.org/10.1056/NEJMc2011400] [PMID: 32402155]
[57]
Benedetti, C.; Waldman, M.; Zaza, G.; Riella, L.V.; Cravedi, P. COVID-19 and the kidneys: An update. Front. Med., 2020, 7, 423.
[http://dx.doi.org/10.3389/fmed.2020.00423] [PMID: 32793615]
[58]
Kimura, H. Hydrogen sulfide: its production and functions; Wiley Online Library, 2011.
[59]
Kimura, H. Hydrogen sulfide: From brain to gut. Antioxid. Redox Signal., 2010, 12(9), 1111-1123.
[http://dx.doi.org/10.1089/ars.2009.2919] [PMID: 19803743]
[60]
Chen, M.; Pritchard, C.; Fortune, D.; Kodi, P.; Grados, M. Hydrogen sulfide: A target to modulate oxidative stress and neuroplasticity for the treatment of pathological anxiety. Expert Rev. Neurother., 2020, 20(1), 109-121.
[http://dx.doi.org/10.1080/14737175.2019.1668270] [PMID: 31530193]
[61]
Zhang, J; Zhang, S; Shan, H; Zhang, M Biologic effect of hydrogen sulfide and its role in traumatic brain injury. Oxid Med Cell Longev, 2020, 2020, 7301615.
[http://dx.doi.org/10.1155/2020/7301615]
[62]
Zhang, X.; Bian, J.S. Hydrogen sulfide: A neuromodulator and neuroprotectant in the central nervous system. ACS Chem. Neurosci., 2014, 5(10), 876-883.
[http://dx.doi.org/10.1021/cn500185g] [PMID: 25230373]
[63]
King, A.L.; Lefer, D.J. Cytoprotective actions of hydrogen sulfide in ischaemia-reperfusion injury. Exp. Physiol., 2011, 96(9), 840-846.
[http://dx.doi.org/10.1113/expphysiol.2011.059725] [PMID: 21666033]
[64]
Guidotti, T.L. Hydrogen sulfide. Int. J. Toxicol., 2010, 29(6), 569-581.
[http://dx.doi.org/10.1177/1091581810384882] [PMID: 21076123]
[65]
Jin, Z.; Chan, H.; Ning, J.; Lu, K.; Ma, D. The role of hydrogen sulfide in pathologies of the vital organs and its clinical application. J. Physiol. Pharmacol., 2015, 66(2), 169-179.
[PMID: 25903948]
[66]
Kimura, H. Hydrogen sulfide: Its production, release and functions. Amino Acids, 2011, 41(1), 113-121.
[http://dx.doi.org/10.1007/s00726-010-0510-x] [PMID: 20191298]
[67]
Wang, R. The gasotransmitter role of hydrogen sulfide. Antioxid. Redox Signal., 2003, 5(4), 493-501.
[http://dx.doi.org/10.1089/152308603768295249] [PMID: 13678538]
[68]
Cao, X.; Bian, J.S. The role of hydrogen sulfide in renal system. Front. Pharmacol., 2016, 7, 385.
[http://dx.doi.org/10.3389/fphar.2016.00385] [PMID: 27803669]
[69]
Meng, G.; Ma, Y.; Xie, L.; Ferro, A.; Ji, Y. Emerging role of hydrogen sulfide in hypertension and related cardiovascular diseases. Br. J. Pharmacol., 2015, 172(23), 5501-5511.
[http://dx.doi.org/10.1111/bph.12900] [PMID: 25204754]
[70]
Liu, Y.H.; Bian, J.S. Bicarbonate-dependent effect of hydrogen sulfide on vascular contractility in rat aortic rings. Am. J. Physiol. Cell Physiol., 2010, 299(4), C866-C872.
[http://dx.doi.org/10.1152/ajpcell.00105.2010] [PMID: 20660164]
[71]
Lee, Z.W.; Zhou, J.; Chen, C.S.; Zhao, Y.; Tan, C.H.; Li, L.; Moore, P.K.; Deng, L.W. The slow-releasing hydrogen sulfide donor, GYY4137, exhibits novel anti-cancer effects in vitro and in vivo. PLoS One, 2011, 6(6), e21077.
[http://dx.doi.org/10.1371/journal.pone.0021077] [PMID: 21701688]
[72]
Farrugia, G.; Szurszewski, J.H. Carbon monoxide, hydrogen sulfide, and nitric oxide as signaling molecules in the gastrointestinal tract. Gastroenterology, 2014, 147(2), 303-313.
[http://dx.doi.org/10.1053/j.gastro.2014.04.041] [PMID: 24798417]
[73]
Beauchamp, R.O., Jr; Bus, J.S.; Popp, J.A.; Boreiko, C.J.; Andjelkovich, D.A.; Leber, P. A critical review of the literature on hydrogen sulfide toxicity. CRC Crit. Rev. Toxicol., 1984, 13(1), 25-97.
[http://dx.doi.org/10.3109/10408448409029321] [PMID: 6378532]
[74]
Nicholls, P.; Marshall, D.C.; Cooper, C.E.; Wilson, M.T. Sulfide inhibition of and metabolism by cytochrome c oxidase. Biochem. Soc. Trans., 2013, 41(5), 1312-1316.
[http://dx.doi.org/10.1042/BST20130070] [PMID: 24059525]
[75]
Rubright, S.L.M.; Pearce, L.L.; Peterson, J. Environmental toxicology of hydrogen sulfide. Nitric. Oxide., 2017, 71, 1-13.
[http://dx.doi.org/10.1016/j.niox.2017.09.011]
[76]
Dilek, N.; Papapetropoulos, A.; Toliver-Kinsky, T.; Szabo, C. Hydrogen sulfide: An endogenous regulator of the immune system. Pharmacol. Res., 2020, 161, 105119.
[http://dx.doi.org/10.1016/j.phrs.2020.105119] [PMID: 32781284]
[77]
Rodrigues, C.; Percival, S. Immunomodulatory effects of glutathione, garlic derivatives, and hydrogen sulfide. Nutrients, 2019, 11(2), 295.
[http://dx.doi.org/10.3390/nu11020295] [PMID: 30704060]
[78]
Wang, H.; Shi, X.; Qiu, M.; Lv, S.; Zheng, H.; Niu, B.; Liu, H. Hydrogen sulfide plays an important role by influencing NLRP3 inflammasome. Int. J. Biol. Sci., 2020, 16(14), 2752-2760.
[http://dx.doi.org/10.7150/ijbs.47595] [PMID: 33110394]
[79]
Rose, P.; Zhu, Y-Z.; Moore, P.K. Hydrogen sulfide and the immune system. In: Advances in Hydrogen Sulfide Biology; Springer, 2021; pp. 99-128.
[http://dx.doi.org/10.1007/978-981-16-0991-6_5]
[80]
Tian, M.; Wang, Y.; Lu, Y.Q.; Yan, M.; Jiang, Y.H.; Zhao, D.Y. Correlation between serum H2S and pulmonary function in children with bronchial asthma. Mol. Med. Rep., 2012, 6(2), 335-338.
[http://dx.doi.org/10.3892/mmr.2012.904] [PMID: 22562181]
[81]
Costantino, M.; Lampa, E.; Nappi, G. Effectiveness of sulphur spa therapy with politzer in the treatment of rhinogenic deafness. Acta Otorhinolaryngol. Ital., 2006, 26(1), 7-13.
[PMID: 18383751]
[82]
Bazhanov, N.; Ansar, M.; Ivanciuc, T.; Garofalo, R.P.; Casola, A. Hydrogen sulfide: A novel player in airway development, pathophysiology of respiratory diseases, and antiviral defenses. Am. J. Respir. Cell Mol. Biol., 2017, 57(4), 403-410.
[http://dx.doi.org/10.1165/rcmb.2017-0114TR] [PMID: 28481637]
[83]
Calderone, V.; Martelli, A.; Testai, L.; Citi, V.; Breschi, M.C. Using hydrogen sulfide to design and develop drugs. Expert Opin. Drug Discov., 2016, 11(2), 163-175.
[http://dx.doi.org/10.1517/17460441.2016.1122590] [PMID: 26593865]
[84]
King, A.L.; Polhemus, D.J.; Bhushan, S.; Otsuka, H.; Kondo, K.; Nicholson, C.K.; Bradley, J.M.; Islam, K.N.; Calvert, J.W.; Tao, Y.X.; Dugas, T.R.; Kelley, E.E.; Elrod, J.W.; Huang, P.L.; Wang, R.; Lefer, D.J. Hydrogen sulfide cytoprotective signaling is endothelial nitric oxide synthase-nitric oxide dependent. Proc. Natl. Acad. Sci., 2014, 111(8), 3182-3187.
[http://dx.doi.org/10.1073/pnas.1321871111] [PMID: 24516168]
[85]
Wang, R. Signaling pathways for the vascular effects of hydrogen sulfide. Curr. Opin. Nephrol. Hypertens., 2011, 20(2), 107-112.
[http://dx.doi.org/10.1097/MNH.0b013e3283430651] [PMID: 21301337]
[86]
Perry, M.M.; Hui, C.K.; Whiteman, M.; Wood, M.E.; Adcock, I.; Kirkham, P.; Michaeloudes, C.; Chung, K.F. Hydrogen sulfide inhibits proliferation and release of IL-8 from human airway smooth muscle cells. Am. J. Respir. Cell Mol. Biol., 2011, 45(4), 746-752.
[http://dx.doi.org/10.1165/rcmb.2010-0304OC] [PMID: 21297080]
[87]
Zhang, G.; Wang, P.; Yang, G.; Cao, Q.; Wang, R. The inhibitory role of hydrogen sulfide in airway hyperresponsiveness and inflammation in a mouse model of asthma. Am. J. Pathol., 2013, 182(4), 1188-1195.
[http://dx.doi.org/10.1016/j.ajpath.2012.12.008] [PMID: 23395089]
[88]
Saito, J; Zhang, Q; Hui, C; Macedo, P; Gibeon, D; Menzies-Gow, A Sputum hydrogen sulfide as a novel biomarker of obstructive neutrophilic asthma. J Allergy Clin Immunol, 2013, 131(1), 232-234. e3..
[http://dx.doi.org/10.1016/j.jaci.2012.10.005]
[89]
Chen, Y.H.; Yao, W.Z.; Geng, B.; Ding, Y.L.; Lu, M.; Zhao, M.W.; Tang, C.S. Endogenous hydrogen sulfide in patients with COPD. Chest, 2005, 128(5), 3205-3211.
[http://dx.doi.org/10.1378/chest.128.5.3205] [PMID: 16304263]
[90]
Chen, Y.H.; Wu, R.; Geng, B.; Qi, Y.F.; Wang, P.P.; Yao, W.Z.; Tang, C.S. Endogenous hydrogen sulfide reduces airway inflammation and remodeling in a rat model of asthma. Cytokine, 2009, 45(2), 117-123.
[http://dx.doi.org/10.1016/j.cyto.2008.11.009] [PMID: 19117767]
[91]
Bates, M.N.; Crane, J.; Balmes, J.R.; Garrett, N. Investigation of hydrogen sulfide exposure and lung function, asthma and chronic obstructive pulmonary disease in a geothermal area of New Zealand. PLoS One, 2015, 10(3), e0122062.
[http://dx.doi.org/10.1371/journal.pone.0122062] [PMID: 25822819]
[92]
Suzuki, Y.; Saito, J.; Kikuchi, M.; Uematsu, M.; Fukuhara, A.; Sato, S.; Munakata, M. Sputum-to-serum hydrogen sulphide ratio as a novel biomarker of predicting future risks of asthma exacerbation. Clin. Exp. Allergy, 2018, 48(9), 1155-1163.
[http://dx.doi.org/10.1111/cea.13173] [PMID: 29758106]
[93]
Saito, J.; Mackay, A.J.; Rossios, C.; Gibeon, D.; Macedo, P.; Sinharay, R.; Bhavsar, P.K.; Wedzicha, J.A.; Chung, K.F. Sputum-to-serum hydrogen sulfide ratio in COPD. Thorax, 2014, 69(10), 903-909.
[http://dx.doi.org/10.1136/thoraxjnl-2013-204868] [PMID: 25035127]
[94]
Wang, L.; Yu, H.; Zhang, Y.; Dong, C.; Liu, B. Intravenous controlled-release hydrogen sulfide protects against ventilator-induced lung injury. Exp. Lung Res., 2017, 43(9-10), 370-377.
[http://dx.doi.org/10.1080/01902148.2017.1381780] [PMID: 29206492]
[95]
Basic, A.; Dahlén, G. Hydrogen sulfide production from subgingival plaque samples. Anaerobe, 2015, 35(Pt A), 21-27.
[http://dx.doi.org/10.1016/j.anaerobe.2014.09.017] [PMID: 25280920]
[96]
Yang, G. H 2 S as a potential defense against COVID-19? Am. J. Physiol. Cell Physiol., 2020, 319(2), C244-C249.
[http://dx.doi.org/10.1152/ajpcell.00187.2020] [PMID: 32515982]
[97]
Renieris, G; Katrini, K; Damoulari, C; Akinosoglou, K; Psarrakis, C; Kyriakopoulou, M Serum hydrogen sulfide and outcome association in pneumonia by the SARS-CoV-2 corona virus. Shock., 2020, 54(5), 633-637.
[98]
Gubernatorova, E.O.; Gorshkova, E.A.; Polinova, A.I.; Drutskaya, M.S. IL-6: Relevance for immunopathology of SARS-CoV-2. Cytokine Growth Factor Rev., 2020, 53, 13-24.
[http://dx.doi.org/10.1016/j.cytogfr.2020.05.009] [PMID: 32475759]
[99]
Kodela, R.; Nath, N.; Chattopadhyay, M.; Nesbitt, D.E.; Velázquez-Martínez, C.A.; Kashfi, K. Hydrogen sulfide-releasing naproxen suppresses colon cancer cell growth and inhibits NF-κB signaling. Drug Des. Devel. Ther., 2015, 9, 4873-4882.
[PMID: 26346117]
[100]
Ruan, Q.; Yang, K.; Wang, W.; Jiang, L.; Song, J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med., 2020, 46(5), 846-848.
[http://dx.doi.org/10.1007/s00134-020-05991-x] [PMID: 32125452]
[101]
Zhang, C.; Wu, Z.; Li, J.W.; Zhao, H.; Wang, G.Q. Cytokine release syndrome in severe COVID-19: interleukin-6 receptor antagonist tocilizumab may be the key to reduce mortality. Int. J. Antimicrob. Agents, 2020, 55(5), 105954.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105954] [PMID: 32234467]
[102]
Tokuda, K.; Kida, K.; Marutani, E.; Crimi, E.; Bougaki, M.; Khatri, A.; Kimura, H.; Ichinose, F. Inhaled hydrogen sulfide prevents endotoxin-induced systemic inflammation and improves survival by altering sulfide metabolism in mice. Antioxid. Redox Signal., 2012, 17(1), 11-21.
[http://dx.doi.org/10.1089/ars.2011.4363] [PMID: 22221071]
[103]
Wang, D; Hu, B; Hu, C; Zhu, F; Liu, X; Zhang, J Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus–infected pneumonia in Wuhan, China. jama, 2020, 323(11), 1061-1069.
[104]
Miller, T.W.; Wang, E.A.; Gould, S.; Stein, E.V.; Kaur, S.; Lim, L.; Amarnath, S.; Fowler, D.H.; Roberts, D.D. Hydrogen sulfide is an endogenous potentiator of T cell activation. J. Biol. Chem., 2012, 287(6), 4211-4221.
[http://dx.doi.org/10.1074/jbc.M111.307819] [PMID: 22167178]
[105]
Dominic, P.; Ahmad, J.; Bhandari, R.; Pardue, S.; Solorzano, J.; Jaisingh, K.; Watts, M.; Bailey, S.R.; Orr, A.W.; Kevil, C.G.; Kolluru, G.K. Decreased availability of nitric oxide and hydrogen sulfide is a hallmark of COVID-19. Redox Biol., 2021, 43, 101982.
[http://dx.doi.org/10.1016/j.redox.2021.101982] [PMID: 34020311]
[106]
Oldenburg, C.E.; Doan, T. Azithromycin for severe COVID-19. Lancet, 2020, 396(10256), 936-937.
[http://dx.doi.org/10.1016/S0140-6736(20)31863-8] [PMID: 32896293]
[107]
Kimura, H. The physiological role of hydrogen sulfide and beyond. Nitric Oxide, 2014, 41, 4-10.
[http://dx.doi.org/10.1016/j.niox.2014.01.002] [PMID: 24491257]
[108]
Kimura, H. Production and physiological effects of hydrogen sulfide. Antioxid. Redox Signal., 2014, 20(5), 783-793.
[http://dx.doi.org/10.1089/ars.2013.5309] [PMID: 23581969]
[109]
Bazhanov, N; Escaffre, O; Freiberg, A; Garofalo, R; Casola, A Broad-range antiviral activity of hydrogen sulfide against highly pathogenic RNA viruses. Sci Rep, 2017, 7, 41029.
[http://dx.doi.org/10.1038/srep41029]
[110]
Ivanciuc, T.; Sbrana, E.; Ansar, M.; Bazhanov, N.; Szabo, C.; Casola, A.; Garofalo, R.P. Hydrogen sulfide is an antiviral and antiinflammatory endogenous gasotransmitter in the airways. Role in respiratory syncytial virus infection. Am. J. Respir. Cell Mol. Biol., 2016, 55(5), 684-696.
[http://dx.doi.org/10.1165/rcmb.2015-0385OC] [PMID: 27314446]
[111]
Mikami, Y.; Shibuya, N.; Kimura, Y.; Nagahara, N.; Yamada, M.; Kimura, H. Hydrogen sulfide protects the retina from light-induced degeneration by the modulation of Ca2+ influx. J. Biol. Chem., 2011, 286(45), 39379-39386.
[http://dx.doi.org/10.1074/jbc.M111.298208] [PMID: 21937432]
[112]
Nagai, Y.; Tsugane, M.; Oka, J.I.; Kimura, H. Hydrogen sulfide induces calcium waves in astrocytes. FASEB J., 2004, 18(3), 557-559.
[http://dx.doi.org/10.1096/fj.03-1052fje] [PMID: 14734631]
[113]
Bartman, C.M.; Schiliro, M.; Helan, M.; Prakash, Y.S.; Linden, D.; Pabelick, C. Hydrogen sulfide, oxygen, and calcium regulation in developing human airway smooth muscle. FASEB J., 2020, 34(9), 12991-13004.
[http://dx.doi.org/10.1096/fj.202001180R] [PMID: 32777143]
[114]
Zhang, J.; Wang, X.; Chen, Y.; Yao, W. Correlation between levels of exhaled hydrogen sulfide and airway inflammatory phenotype in patients with chronic persistent asthma. Respirology, 2014, 19(8), 1165-1169.
[http://dx.doi.org/10.1111/resp.12372] [PMID: 25168466]
[115]
Wu, R.; Yao, W.Z.; Chen, Y.H.; Geng, B.; Lu, M.; Tang, C.S. The regulatory effect of endogenous hydrogen sulfide on acute asthma. Zhonghua Jie He He Hu Xi Za Zhi, 2007, 30(7), 522-526.
[PMID: 17961407]
[116]
Bourgonje, A.R.; Offringa, A.K.; van Eijk, L.E.; Abdulle, A.E.; Hillebrands, J.L.; van der Voort, P.H.J.; van Goor, H.; van Hezik, E.J. N-acetylcysteine and hydrogen sulfide in coronavirus disease 2019. Antioxid. Redox Signal., 2021, 35(14), 1207-1225.
[http://dx.doi.org/10.1089/ars.2020.8247] [PMID: 33607929]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy