Temporary Mechanical Circulatory Support: Left, Right, and Biventricular Devices | Bentham Science
Generic placeholder image

Current Cardiology Reviews

Editor-in-Chief

ISSN (Print): 1573-403X
ISSN (Online): 1875-6557

Review Article

Temporary Mechanical Circulatory Support: Left, Right, and Biventricular Devices

Author(s): Michael Dangl, Michael Albosta, Hoda Butros and Matthias Loebe*

Volume 19, Issue 5, 2023

Published on: 27 April, 2023

Article ID: e140323214613 Pages: 16

DOI: 10.2174/1573403X19666230314115853

open access plus

Open Access Journals Promotions 2
Abstract

Temporary mechanical circulatory support (MCS) encompasses a wide array of invasive devices, which provide short-term hemodynamic support for multiple clinical indications. Although initially developed for the management of cardiogenic shock, indications for MCS have expanded to include prophylactic insertion prior to high-risk percutaneous coronary intervention, treatment of acute circulatory failure following cardiac surgery, and bridging of end-stage heart failure patients to more definitive therapies, such as left ventricular assist devices and cardiac transplantation. A wide variety of devices are available to provide left ventricular, right ventricular, or biventricular support. The choice of a temporary MCS device requires consideration of the clinical scenario, patient characteristics, institution protocols, and provider familiarity and training. In this review, the most common forms of left, right, and biventricular temporary MCS are discussed, along with their indications, contraindications, complications, cannulations, hemodynamic effects, and available clinical data.

Keywords: Heart failure, mechanical circulatory support, cardiogenic shock, left ventricular assist device, intra-aortic balloon pump, ECMO, impella.

Graphical Abstract
[1]
Fincke R, Hochman JS, Lowe AM, et al. Cardiac power is the strongest hemodynamic correlate of mortality in cardiogenic shock: A report from the SHOCK trial registry. J Am Coll Cardiol 2004; 44(2): 340-8.
[http://dx.doi.org/10.1016/j.jacc.2004.03.060] [PMID: 15261929]
[2]
Harjola VP, Lassus J, Sionis A, et al. Clinical picture and risk prediction of short-term mortality in cardiogenic shock. Eur J Heart Fail 2015; 17(5): 501-9.
[http://dx.doi.org/10.1002/ejhf.260] [PMID: 25820680]
[3]
Hochman JS, Sleeper LA, Webb JG, et al. Early revascularization in acute myocardial infarction complicated by cardiogenic shock. SHOCK Investigators. N Engl J Med 1999; 341(9): 625-34.
[http://dx.doi.org/10.1056/NEJM199908263410901] [PMID: 10460813]
[4]
Basir MB, Schreiber T, Dixon S, et al. Feasibility of early mechanical circulatory support in acute myocardial infarction complicated by cardiogenic shock: The Detroit cardiogenic shock initiative. Catheter Cardiovasc Interv 2018; 91(3): 454-61.
[http://dx.doi.org/10.1002/ccd.27427] [PMID: 29266676]
[5]
UNOS/OPTN. Adult Heart Allocation Changes 2018 2018.
[6]
Bernhardt AM. The new tiered allocation system for heart transplantation in the United States-a Faustian bargain. J Heart Lung Transplant 2019; 38(8): 870-1.
[http://dx.doi.org/10.1016/j.healun.2019.05.010] [PMID: 31178380]
[7]
Papolos AI, Kenigsberg BB, Berg DD, et al. Management and outcomes of cardiogenic shock in cardiac ICUs with versus without shock teams. J Am Coll Cardiol 2021; 78(13): 1309-17.
[http://dx.doi.org/10.1016/j.jacc.2021.07.044] [PMID: 34556316]
[8]
Basir MB, Kapur NK, Patel K, et al. Improved outcomes associated with the use of shock protocols: updates from the national cardiogenic shock initiative. Catheter Cardiovasc Interv 2019; 93(7): ccd.28307.
[http://dx.doi.org/10.1002/ccd.28307] [PMID: 31025538]
[9]
Tehrani BN, Truesdell AG, Sherwood MW, et al. Standardized team-based care for cardiogenic shock. J Am Coll Cardiol 2019; 73(13): 1659-69.
[http://dx.doi.org/10.1016/j.jacc.2018.12.084] [PMID: 30947919]
[10]
Brusca SB, Caughron H, Njoroge JN, Cheng R, O’Brien CG, Barnett CF. The shock team: A multidisciplinary approach to early patient phenotyping and appropriate care escalation in cardiogenic shock. Curr Opin Cardiol 2022; 37(3): 241-9.
[http://dx.doi.org/10.1097/HCO.0000000000000967] [PMID: 35612936]
[11]
Scheidt S, Wilner G, Mueller H, et al. Intra-aortic balloon counterpulsation in cardiogenic shock. Report of a co-operative clinical trial. N Engl J Med 1973; 288(19): 979-84.
[http://dx.doi.org/10.1056/NEJM197305102881901] [PMID: 4696253]
[12]
Prondzinsky R, Unverzagt S, Russ M, et al. Hemodynamic effects of intra-aortic balloon counterpulsation in patients with acute myocardial infarction complicated by cardiogenic shock: the prospective, randomized IABP shock trial. Shock 2012; 37(4): 378-84.
[http://dx.doi.org/10.1097/SHK.0b013e31824a67af] [PMID: 22266974]
[13]
Thiele H, Zeymer U, Neumann FJ, et al. Intra-aortic balloon counterpulsation in acute myocardial infarction complicated by cardiogenic shock (IABP-SHOCK II): final 12 month results of a randomised, open-label trial. Lancet 2013; 382(9905): 1638-45.
[http://dx.doi.org/10.1016/S0140-6736(13)61783-3] [PMID: 24011548]
[14]
Thiele H, Zeymer U, Thelemann N, et al. Intraaortic balloon pump in cardiogenic shock complicating acute myocardial infarction. Circulation 2019; 139(3): 395-403.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.118.038201] [PMID: 30586721]
[15]
Ponikowski P, Voors AA, Anker SD, et al. 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 2016; 37(27): 2129-200.
[http://dx.doi.org/10.1093/eurheartj/ehw128] [PMID: 27206819]
[16]
O’Gara PT, Kushner FG, Ascheim DD, et al. 2013 ACCF/AHA guideline for the management of ST-Elevation myocardial infarction. J Am Coll Cardiol 2013; 61(4): e78-e140.
[http://dx.doi.org/10.1016/j.jacc.2012.11.019] [PMID: 23256914]
[17]
Levine GN, Bates ER, Blankenship JC, et al. 2011 ACCF/AHA/SCAI Guideline for Percutaneous Coronary Intervention: a report of the american college of cardiology foundation/american heart association task force on practice guidelines and the society for cardiovascular angiography and interventions. Circulation 2011; 124(23): e574-651.
[PMID: 22064601]
[18]
Perera D, Stables R, Thomas M, et al. Elective intra-aortic balloon counterpulsation during high-risk percutaneous coronary intervention: a randomized controlled trial. JAMA 2010; 304(8): 867-74.
[http://dx.doi.org/10.1001/jama.2010.1190] [PMID: 20736470]
[19]
Thiele H, Zeymer U, Neumann FJ, et al. Intraaortic balloon support for myocardial infarction with cardiogenic shock. N Engl J Med 2012; 367(14): 1287-96.
[http://dx.doi.org/10.1056/NEJMoa1208410] [PMID: 22920912]
[20]
Kapur NK, Paruchuri V, Pham DT, et al. Hemodynamic effects of left atrial or left ventricular cannulation for acute circulatory support in a bovine model of left heart injury. ASAIO J 2015; 61(3): 301-6.
[http://dx.doi.org/10.1097/MAT.0000000000000195] [PMID: 25485565]
[21]
Burzotta F, Trani C, Doshi SN, et al. Impella ventricular support in clinical practice: Collaborative viewpoint from a European expert user group. Int J Cardiol 2015; 201: 684-91.
[http://dx.doi.org/10.1016/j.ijcard.2015.07.065] [PMID: 26363632]
[22]
Seyfarth M, Sibbing D, Bauer I, et al. A randomized clinical trial to evaluate the safety and efficacy of a percutaneous left ventricular assist device versus intra-aortic balloon pumping for treatment of cardiogenic shock caused by myocardial infarction. J Am Coll Cardiol 2008; 52(19): 1584-8.
[http://dx.doi.org/10.1016/j.jacc.2008.05.065] [PMID: 19007597]
[23]
Ouweneel DM, Eriksen E, Sjauw KD, et al. Percutaneous mechanical circulatory support versus intra-aortic balloon pump in cardiogenic shock after acute myocardial infarction. J Am Coll Cardiol 2017; 69(3): 278-87.
[http://dx.doi.org/10.1016/j.jacc.2016.10.022] [PMID: 27810347]
[24]
O’Neill WW, Schreiber T, Wohns DHW, et al. The current use of Impella 2.5 in acute myocardial infarction complicated by cardiogenic shock: results from the USpella Registry. J Interv Cardiol 2014; 27(1): 1-11.
[http://dx.doi.org/10.1111/joic.12080] [PMID: 24329756]
[25]
Lauten A, Engström AE, Jung C, et al. Percutaneous left-ventricular support with the Impella-2.5-assist device in acute cardiogenic shock: Results of the Impella-EUROSHOCK-registry. Circ Heart Fail 2013; 6(1): 23-30.
[http://dx.doi.org/10.1161/CIRCHEARTFAILURE.112.967224] [PMID: 23212552]
[26]
Schrage B, Ibrahim K, Loehn T, et al. Impella support for acute myocardial infarction complicated by cardiogenic shock. Circulation 2019; 139(10): 1249-58.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.118.036614] [PMID: 30586755]
[27]
Wernly B, Karami M, Engström AE, et al. Impella versus extracorporal life support in cardiogenic shock: A propensity score adjusted analysis. ESC Heart Fail 2021; 8(2): 953-61.
[http://dx.doi.org/10.1002/ehf2.13200] [PMID: 33560591]
[28]
Thalji NM, Maltais S, Daly RC, et al. Risk of conventional cardiac surgery among patients with severe left ventricular dysfunction in the era of mechanical circulatory support. J Thorac Cardiovasc Surg 2018; 156(4): 1530-40.
[http://dx.doi.org/10.1016/j.jtcvs.2018.04.130] [PMID: 30248795]
[29]
Khorsandi M, Shaikhrezai K, Prasad S, et al. Advanced mechanical circulatory support for post-cardiotomy cardiogenic shock: A 20-year outcome analysis in a non-transplant unit. J Cardiothorac Surg 2016; 11(1): 29.
[http://dx.doi.org/10.1186/s13019-016-0430-2] [PMID: 26892226]
[30]
Benke K, Korça E, Boltjes A, Stengl R, Hofmann B, Matin M. Preventive Impella(®) Support in High-Risk Patients Undergoing Cardiac Surgery. J Clin Med 2022; 11(18): 5404.
[31]
Rihal CS, Naidu SS, Givertz MM, et al. 2015 SCAI/ACC/HFSA/STS Clinical Expert Consensus Statement on the Use of Percutaneous Mechanical Circulatory Support Devices in Cardiovascular Care (Endorsed by the American Heart Association, the Cardiological Society of India, and Sociedad Latino Americana de Cardiologia Intervencion; Affirmation of Value by the Canadian Association of Interventional Cardiology-Association Canadienne de Cardiologie d’intervention). J Card Fail 2015; 21(6): 499-518.
[http://dx.doi.org/10.1016/j.cardfail.2015.03.002] [PMID: 26036425]
[32]
Bastos MB, Daemen J, Van Mieghem N. Haemodynamic impact of a new pulsatile mechanical circulatory support in high-risk coronary stenting. EuroIntervention 2018; 14(7): 824-5.
[http://dx.doi.org/10.4244/EIJ-D-17-01109] [PMID: 29437034]
[33]
Anastasiadis K, Chalvatzoulis O, Antonitsis P, Tossios P, Papakonstantinou C. Left ventricular decompression during peripheral extracorporeal membrane oxygenation support with the use of the novel iVAC pulsatile paracorporeal assist device. Ann Thorac Surg 2011; 92(6): 2257-9.
[http://dx.doi.org/10.1016/j.athoracsur.2011.05.063] [PMID: 22115242]
[34]
Mariani MA, Diephuis JC, Kuipers MJH, Gianoli M, Grandjean JG. Off-pump coronary artery bypass graft surgery with a pulsatile catheter pump for left ventricular dysfunction. Ann Thorac Surg 2007; 84(2): 690-2.
[http://dx.doi.org/10.1016/j.athoracsur.2006.12.016] [PMID: 17643674]
[35]
Bastos MB, van Wiechen MP, Van Mieghem NM. PulseCath iVAC2L: Next-generation pulsatile mechanical circulatory support. Future Cardiol 2020; 16(2): 103-12.
[http://dx.doi.org/10.2217/fca-2019-0060] [PMID: 31934785]
[36]
den Uil C, Daemen J, Lenzen M, et al. Pulsatile iVAC 2L circulatory support in high-risk percutaneous coronary intervention. EuroIntervention 2017; 12(14): 1689-96.
[http://dx.doi.org/10.4244/EIJ-D-16-00371] [PMID: 28216471]
[37]
Samol A, Luani B, Kaese S, Wiemer M. TCT-321 Head-to-head comparison of a pulsatile and a continuous flow left ventricular assist device in high-risk PCI Setting: iVAC2L versus impella 2.5. J Am Coll Cardiol 2019; 74(13): B319-9.
[http://dx.doi.org/10.1016/j.jacc.2019.08.400]
[38]
Samol A, Schmidt S, Zeyse M, Wiemer M, Luani B. High-risk PCI under support of a pulsatile left ventricular assist device-First German experience with the iVAC2L system. Int J Cardiol 2019; 297: 30-5.
[http://dx.doi.org/10.1016/j.ijcard.2019.10.020] [PMID: 31630819]
[39]
Thiele H, Sick P, Boudriot E, et al. Randomized comparison of intra-aortic balloon support with a percutaneous left ventricular assist device in patients with revascularized acute myocardial infarction complicated by cardiogenic shock. Eur Heart J 2005; 26(13): 1276-83.
[http://dx.doi.org/10.1093/eurheartj/ehi161] [PMID: 15734771]
[40]
Burkhoff D, Cohen H, Brunckhorst C, O’Neill WW. A randomized multicenter clinical study to evaluate the safety and efficacy of the TandemHeart percutaneous ventricular assist device versus conventional therapy with intraaortic balloon pumping for treatment of cardiogenic shock. Am Heart J 2006; 152(3): 469.e1-8.
[http://dx.doi.org/10.1016/j.ahj.2006.05.031] [PMID: 16923414]
[41]
Kar B, Gregoric ID, Basra SS, Idelchik GM, Loyalka P. The percutaneous ventricular assist device in severe refractory cardiogenic shock. J Am Coll Cardiol 2011; 57(6): 688-96.
[http://dx.doi.org/10.1016/j.jacc.2010.08.613] [PMID: 20950980]
[42]
Kovacic JC, Nguyen HT, Karajgikar R, Sharma SK, Kini AS. The impella recover 2.5 and TandemHeart ventricular assist devices are safe and associated with equivalent clinical outcomes in patients undergoing high-risk percutaneous coronary intervention. Catheter Cardiovasc Interv 2013; 82(1): E28-37.
[http://dx.doi.org/10.1002/ccd.22929] [PMID: 21234916]
[43]
Anderson MB, Goldstein J, Milano C, et al. Benefits of a novel percutaneous ventricular assist device for right heart failure: The prospective RECOVER RIGHT study of the Impella RP device. J Heart Lung Transplant 2015; 34(12): 1549-60.
[http://dx.doi.org/10.1016/j.healun.2015.08.018] [PMID: 26681124]
[44]
Cheung A, Freed D, Hunziker P, Leprince P. TCT-371 first clinical evaluation of a novel percutaneous right ventricular assist device: The Impella RP. J Am Coll Cardiol 2012; 60(17): B106-7.
[http://dx.doi.org/10.1016/j.jacc.2012.08.399]
[45]
van Diepen S, Katz JN, Albert NM, et al. Contemporary management of cardiogenic shock: A scientific statement from the American Heart Association. Circulation 2017; 136(16): e232-68.
[http://dx.doi.org/10.1161/CIR.0000000000000525] [PMID: 28923988]
[46]
Anderson M, Morris DL, Tang D, et al. Outcomes of patients with right ventricular failure requiring short-term hemodynamic support with the Impella RP device. J Heart Lung Transplant 2018; 37(12): 1448-58.
[http://dx.doi.org/10.1016/j.healun.2018.08.001] [PMID: 30241890]
[47]
Rajdev S, Benza R, Misra V. Use of Tandem Heart as a temporary hemodynamic support option for severe pulmonary artery hypertension complicated by cardiogenic shock. J Invasive Cardiol 2007; 19(8): E226-9.
[PMID: 17712211]
[48]
Takagaki M, Wurzer C, Wade R, et al. Successful conversion of TandemHeart left ventricular assist device to right ventricular assist device after implantation of a Heart Mate XVE. Ann Thorac Surg 2008; 86(5): 1677-9.
[http://dx.doi.org/10.1016/j.athoracsur.2008.04.101] [PMID: 19049776]
[49]
Prutkin JM, Strote JA, Stout KK. Percutaneous right ventricular assist device as support for cardiogenic shock due to right ventricular infarction. Chest 2008; 20(7): E215-6.
[PMID: 18599906]
[50]
Hira RS, Thamwiwat A, Kar B. TandemHeart placement for cardiogenic shock in acute severe mitral regurgitation and right ventricular failure. Catheter Cardiovasc Interv 2014; 83(2): 319-22.
[http://dx.doi.org/10.1002/ccd.25107] [PMID: 23907937]
[51]
Kapur NK, Paruchuri V, Jagannathan A, et al. Mechanical circulatory support for right ventricular failure. JACC Heart Fail 2013; 1(2): 127-34.
[http://dx.doi.org/10.1016/j.jchf.2013.01.007] [PMID: 24621838]
[52]
Ravichandran AK, Baran DA, Stelling K, Cowger JA, Salerno CT. Outcomes with the Tandem Protek Duo Dual-Lumen percutaneous right ventricular assist device. ASAIO J 2018; 64(4): 570-2.
[http://dx.doi.org/10.1097/MAT.0000000000000709] [PMID: 29095736]
[53]
Salna M, Garan AR, Kirtane AJ, et al. Novel percutaneous dual-lumen cannula-based right ventricular assist device provides effective support for refractory right ventricular failure after left ventricular assist device implantation. Interact Cardiovasc Thorac Surg 2020; 30(4): 499-506.
[http://dx.doi.org/10.1093/icvts/ivz322] [PMID: 31986207]
[54]
Vaile JR, Rame JE, Alvarez RJ, et al. 3 Cases of superior vena cava syndrome following percutaneous right ventricular assist device placement. JACC Case Rep 2021; 3(15): 1690-3.
[http://dx.doi.org/10.1016/j.jaccas.2021.09.005] [PMID: 34766020]
[55]
Keebler ME, Haddad EV, Choi CW, et al. Venoarterial extracorporeal membrane oxygenation in cardiogenic shock. JACC Heart Fail 2018; 6(6): 503-16.
[http://dx.doi.org/10.1016/j.jchf.2017.11.017] [PMID: 29655828]
[56]
Burkhoff D, Sayer G, Doshi D, Uriel N. Hemodynamics of mechanical circulatory support. J Am Coll Cardiol 2015; 66(23): 2663-74.
[http://dx.doi.org/10.1016/j.jacc.2015.10.017] [PMID: 26670067]
[57]
Alba AC, Foroutan F, Buchan TA, et al. Mortality in patients with cardiogenic shock supported with VA ECMO: A systematic review and meta-analysis evaluating the impact of etiology on 29,289 patients. J Heart Lung Transplant 2021; 40(4): 260-8.
[http://dx.doi.org/10.1016/j.healun.2021.01.009] [PMID: 33551227]
[58]
Wever-Pinzon O, Drakos SG, Kfoury AG, et al. Morbidity and mortality in heart transplant candidates supported with mechanical circulatory support: is reappraisal of the current United network for organ sharing thoracic organ allocation policy justified? Circulation 2013; 127(4): 452-62.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.112.100123] [PMID: 23271796]
[59]
OPTN policies - OPTN: Organ Procurement and Transplantation Network-OPTN Available from: https://optn.transplant.hrsa.gov/media/eavh5bf3/optn_policies.pdf
[60]
Hanff TC, Harhay MO, Kimmel SE, et al. Trends in mechanical support use as a bridge to adult heart transplant under new allocation rules. JAMA Cardiol 2020; 5(6): 728-9.
[http://dx.doi.org/10.1001/jamacardio.2020.0667] [PMID: 32293645]
[61]
Kilic A, Mathier MA, Hickey GW, et al. Evolving trends in adult heart transplant with the 2018 heart allocation policy change. JAMA Cardiol 2021; 6(2): 159-67.
[http://dx.doi.org/10.1001/jamacardio.2020.4909] [PMID: 33112391]
[62]
Nordan T, Critsinelis AC, Mahrokhian SH, et al. Bridging with extracorporeal membrane oxygenation under the new heart allocation system: A united network for organ sharing database analysis. Circ Heart Fail 2021; 14(5): e007966.
[http://dx.doi.org/10.1161/CIRCHEARTFAILURE.120.007966] [PMID: 33951934]
[63]
Cheng R, Hachamovitch R, Kittleson M, et al. Complications of extracorporeal membrane oxygenation for treatment of cardiogenic shock and cardiac arrest: a meta-analysis of 1,866 adult patients. Ann Thorac Surg 2014; 97(2): 610-6.
[http://dx.doi.org/10.1016/j.athoracsur.2013.09.008] [PMID: 24210621]
[64]
Kurihara C, Kawabori M, Sugiura T, et al. Bridging to a long-term ventricular assist device with short-term mechanical circulatory support. Artif Organs 2018; 42(6): 589-96.
[http://dx.doi.org/10.1111/aor.13112] [PMID: 29473181]
[65]
Bertoldi LF, Pappalardo F, Lubos E, et al. Bridging INTERMACS 1 patients from VA-ECMO to LVAD via Impella 5.0: De-escalate and ambulate. J Crit Care 2020; 57: 259-63.
[http://dx.doi.org/10.1016/j.jcrc.2019.12.028] [PMID: 32061461]
[66]
Castro L, Zipfel S, Braunsteiner J, et al. Switching to Impella 5.0 decreases need for transfusion in patients undergoing temporary mechanical circulatory support. J Crit Care 2020; 57: 253-8.
[http://dx.doi.org/10.1016/j.jcrc.2019.11.007] [PMID: 32423622]
[67]
Kawashima D, Gojo S, Nishimura T, et al. Left ventricular mechanical support with Impella provides more ventricular unloading in heart failure than extracorporeal membrane oxygenation. ASAIO J 2011; 57(3): 169-76.
[http://dx.doi.org/10.1097/MAT.0b013e31820e121c] [PMID: 21317769]
[68]
Ogawa S, Richardson JE, Sakai T, Ide M, Tanaka KA. High mortality associated with intracardiac and intrapulmonary thromboses after cardiopulmonary bypass. J Anesth 2012; 26(1): 9-19.
[http://dx.doi.org/10.1007/s00540-011-1253-x] [PMID: 22005756]
[69]
Truby LK, Takeda K, Mauro C, et al. Incidence and implications of left ventricular distention during venoarterial extracorporeal membrane oxygenation support. ASAIO J 2017; 63(3): 257-65.
[http://dx.doi.org/10.1097/MAT.0000000000000553] [PMID: 28422817]
[70]
Cheng R, Hachamovitch R, Makkar R, et al. Lack of survival benefit found with use of intraaortic balloon pump in extracorporeal membrane oxygenation: a pooled experience of 1517 patients. J Invasive Cardiol 2015; 27(10): 453-8.
[PMID: 26208379]
[71]
Li Y, Yan S, Gao S, et al. Effect of an intra-aortic balloon pump with venoarterial extracorporeal membrane oxygenation on mortality of patients with cardiogenic shock: a systematic review and meta-analysis†. Eur J Cardiothorac Surg 2019; 55(3): 395-404.
[http://dx.doi.org/10.1093/ejcts/ezy304] [PMID: 30252028]
[72]
Pappalardo F, Schulte C, Pieri M, et al. Concomitant implantation of Impella® on top of veno-arterial extracorporeal membrane oxygenation may improve survival of patients with cardiogenic shock. Eur J Heart Fail 2017; 19(3): 404-12.
[http://dx.doi.org/10.1002/ejhf.668] [PMID: 27709750]
[73]
Schrage B, Burkhoff D, Rübsamen N, et al. Unloading of the left ventricle during venoarterial extracorporeal membrane oxygenation therapy in cardiogenic shock. JACC Heart Fail 2018; 6(12): 1035-43.
[http://dx.doi.org/10.1016/j.jchf.2018.09.009] [PMID: 30497643]
[74]
Wilson J, Fisher R, Caetano F, et al. Managing Harlequin Syndrome in VA-ECMO - do not forget the right ventricle. Perfusion 2022 Jul; 37(5): 526-9.
[http://dx.doi.org/10.1177/02676591211020895] [PMID: 34053349]
[75]
Awar L, Song AJ, Dhillon AS, Mehra A, Burstein S, Shavelle DM. Use of the CardioHELP device for temporary hemodynamic support during high-risk percutaneous coronary intervention. J Invasive Cardiol 2021; 33(8): E614-8.
[PMID: 34338652]
[76]
Borisenko O, Wylie G, Payne J, et al. Thoratec CentriMag for temporary treatment of refractory cardiogenic shock or severe cardiopulmonary insufficiency: A systematic literature review and meta-analysis of observational studies. ASAIO J 2014; 60(5): 487-97.
[http://dx.doi.org/10.1097/MAT.0000000000000117] [PMID: 25010916]
[77]
Mehta V, Venkateswaran RV. Outcome of CentriMag™ extracorporeal mechanical circulatory support use in critical cardiogenic shock (INTERMACS 1) patients. Indian J Thorac Cardiovasc Surg 2020 Aug; 36 (Suppl. 2): 265-74.
[http://dx.doi.org/10.1007/s12055-020-01060-6] [PMID: 33020688]
[78]
Gilotra NA, Stevens GR. Temporary mechanical circulatory support: A review of the options, indications, and outcomes. Clin Med Insights Cardiol 2015; 8 (Suppl. 1): 75-85.
[PMID: 25674024]
[79]
Hunziker P, Hunziker L. Percutaneous biventricular cardiac assist device in cardiogenic shock. Eur Heart J 2013; 34(22): 1620.
[http://dx.doi.org/10.1093/eurheartj/eht020] [PMID: 23594594]
[80]
Kapur NK, Jumean M, Ghuloom A, et al. First successful use of 2 axial flow catheters for percutaneous biventricular circulatory support as a bridge to a durable left ventricular assist device. Circ Heart Fail 2015; 8(5): 1006-8.
[http://dx.doi.org/10.1161/CIRCHEARTFAILURE.115.002374] [PMID: 26374919]
[81]
Aghili N, Bader Y, Vest AR, et al. Biventricular circulatory support using 2 axial flow catheters for cardiogenic shock without the need for surgical vascular access. Circ Cardiovasc Interv 2016; 9(6): e003636.
[http://dx.doi.org/10.1161/CIRCINTERVENTIONS.116.003636] [PMID: 27188188]
[82]
Kamioka N, Patel A, Burke MA, Greenbaum A, Babaliaros V. Biventricular Impella placement via complete venous access. Catheter Cardiovasc Interv 2019; 93(6): E343-5.
[http://dx.doi.org/10.1002/ccd.27103] [PMID: 28544381]
[83]
Pappalardo F, Scandroglio AM, Latib A. Full percutaneous biventricular support with two Impella pumps: The Bi-Pella approach. ESC Heart Fail 2018; 5(3): 368-71.
[http://dx.doi.org/10.1002/ehf2.12274] [PMID: 29465166]
[84]
Chiu CY, Hättasch R, Praeger D, et al. Percutaneous biventricular Impella support in therapy-refractory cardiogenic shock. Heart Lung 2018; 47(3): 250-2.
[http://dx.doi.org/10.1016/j.hrtlng.2018.03.009] [PMID: 29628145]
[85]
Dalal PK, Mertens A, Shah D, Hanson I. Hemodynamic support using percutaneous transfemoral Impella 5.0 and Impella RP for refractory cardiogenic shock. Case Rep Cardiol 2019; 2019: 1-6.
[http://dx.doi.org/10.1155/2019/4591250] [PMID: 30809398]
[86]
Zoltowska DM, Agrawal Y, Nazroo JYR, Patel K. Successful resuscitation of acute cardiogenic shock presenting as ventricular fibrillation via Bipella approach: a case report. Eur Heart J Case Rep 2021; 5(2): ytab040.
[http://dx.doi.org/10.1093/ehjcr/ytab040] [PMID: 33604508]
[87]
Randhawa VK, Al-Fares A, Tong MZY, et al. A pragmatic approach to weaning temporary mechanical circulatory support. JACC Heart Fail 2021; 9(9): 664-73.
[http://dx.doi.org/10.1016/j.jchf.2021.05.011] [PMID: 34391743]
[88]
Baran DA, Grines CL, Bailey S, et al. SCAI clinical expert consensus statement on the classification of cardiogenic shock: This document was endorsed by the American College of Cardiology (ACC), the American Heart Association (AHA), the Society of Critical Care Medicine (SCCM), and the Society of Thoracic Surgeons (STS) in April 2019. Catheter Cardiovasc Interv 2019; 94(1): 29-37.
[PMID: 31104355]

© 2024 Bentham Science Publishers | Privacy Policy