Pilot Study of the Ex Vivo Blood Leukocytes’ Proteomic Response to Prednisone Stimulation in Corticosteroid-responsive Asthma | Bentham Science
Generic placeholder image

Current Proteomics

Editor-in-Chief

ISSN (Print): 1570-1646
ISSN (Online): 1875-6247

Research Article

Pilot Study of the Ex Vivo Blood Leukocytes’ Proteomic Response to Prednisone Stimulation in Corticosteroid-responsive Asthma

Author(s): Aleksandra Nikolic*, Kevin J. Mark, Sandra Dragicevic, Tamara Babic, Katarina Milosevic, Branimir Nestorovic and Vladimir Beskoski

Volume 20, Issue 1, 2023

Published on: 20 March, 2023

Page: [12 - 18] Pages: 7

DOI: 10.2174/1570164620666230220112500

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Leukocytes are key cellular effectors of inflammation in asthma and understanding their function in this disease is of crucial importance. Blood leukocytes reflect the actions of their counterparts in the lungs and they can be obtained through minimal invasive procedures as part of the peripheral blood.

Objective: The aim of the study was to identify proteins in blood leukocyte proteomes that respond to ex vivo treatment by prednisone in order to pinpoint candidates for predictive biomarkers in corticosteroid- responsive asthma.

Methods: The study included five children diagnosed with asthma and five healthy children. After the ex vivo treatment of blood samples with prednisone, lysis of erythrocytes was performed and proteins were extracted from the remaining leukocytes by ultrasonic disintegration. Protein extracts were analyzed by reversed phase nano-liquidchromatography–tandem mass spectrometry (LC–MS/MS).

Results: The stimulation of asthmatics' leukocytes with prednisone has led to an increase in the levels of FYB (fold change 3.4) and LYZ (fold change 2.2) with a statistical significance of p<0.005. The two proteins with expressions significantly altered upon the prednisone treatment should be further explored as tools to evaluate the patient's response before therapy administration, especially when lung function measurements are not possible, as is the case with young pediatric patients.

Conclusion: The approach that entails ex vivo response of blood leukocytes to therapeutics can facilitate asthma management and help overcome the need for therapeutic adjustments in a clinical setting.

Keywords: Asthma, corticosteroids, ex vivo stimulation, inflammation, leukocytes, proteomics.

Graphical Abstract
[1]
Low, K.; Bardin, P.G. Targeted therapy for severe asthma: Identifying the right patients. Mol. Diagn. Ther., 2017, 21(3), 235-247.
[http://dx.doi.org/10.1007/s40291-016-0252-x] [PMID: 28044257]
[2]
Pérez de Llano, L.; Dacal Rivas, D.; Blanco Cid, N.; Martin Robles, I. Phenotype-guided asthma therapy: An alternative approach to guidelines. J. Asthma Allergy, 2021, 14, 207-217.
[http://dx.doi.org/10.2147/JAA.S266999] [PMID: 33737814]
[3]
Henderson, I.; Caiazzo, E.; McSharry, C.; Guzik, T.J.; Maffia, P. Why do some asthma patients respond poorly to glucocorticoid therapy? Pharmacol. Res., 2020, 160105189
[http://dx.doi.org/10.1016/j.phrs.2020.105189] [PMID: 32911071]
[4]
Druilhe, A.; Létuvé, S.; Pretolani, M. Glucocorticoid-induced apoptosis in human eosinophils: mechanisms of action. Apoptosis, 2003, 8(5), 481-495.
[http://dx.doi.org/10.1023/A:1025590308147] [PMID: 12975579]
[5]
Massingham, K.; Fox, S.; Smaldone, A. Asthma therapy in pediatric patients: a systematic review of treatment with montelukast versus inhaled corticosteroids. J. Pediatr. Health Care, 2014, 28(1), 51-62.
[http://dx.doi.org/10.1016/j.pedhc.2012.11.005] [PMID: 23312367]
[6]
Sakae, T.M.; Maurici, R.; Trevisol, D.J.; Pizzichini, M.M.M.; Pizzichini, E. Effects of prednisone on eosinophilic bronchitis in asthma: A systematic review and meta-analysis. J. Bras. Pneumol., 2014, 40(5), 552-563.
[http://dx.doi.org/10.1590/S1806-37132014000500012] [PMID: 25410844]
[7]
Wenzel, S.E.; Busse, W.W. National heart, lung, and blood institute’s severe asthma research program. Severe asthma: Lessons from the severe asthma research program. J. Allergy Clin. Immunol., 2007, 119(1), 14-21.
[http://dx.doi.org/10.1016/j.jaci.2006.10.025] [PMID: 17208583]
[8]
Stejskal, S.; Koutná, I. Ručka, Z. Isolation of granulocytes: Which transcriptome do we analyse - neutrophils or eosinophils? Folia Biol. (Praha), 2010, 56(6), 252-255.
[PMID: 21324266]
[9]
Yoon, S.W.; Kim, T.Y.; Sung, M.H.; Kim, C.J.; Poo, H. Comparative proteomic analysis of peripheral blood eosinophils from healthy donors and atopic dermatitis patients with eosinophilia. Proteomics, 2005, 5(7), 1987-1995.
[http://dx.doi.org/10.1002/pmic.200401086] [PMID: 15832365]
[10]
Barnig, C.; Alsaleh, G.; Jung, N.; Dembélé, D.; Paul, N.; Poirot, A.; Uring-Lambert, B.; Georgel, P.; de Blay, F.; Bahram, S. Circulating human eosinophils share a similar transcriptional profile in asthma and other hypereosinophilic disorders. PLoS One, 2015, 10(11)e0141740
[http://dx.doi.org/10.1371/journal.pone.0141740] [PMID: 26524763]
[11]
Burnsides, C.; Corry, J.; Alexander, J.; Balint, C.; Cosmar, D.; Phillips, G.; Marketon, J.I. Ex vivo stimulation of whole blood as a means to determine glucocorticoid sensitivity. J. Inflamm. Res., 2012, 5, 89-97.
[PMID: 22952414]
[12]
Hoshino, A.; Costa-Silva, B.; Shen, T.L.; Rodrigues, G.; Hashimoto, A.; Tesic Mark, M.; Molina, H.; Kohsaka, S.; Di Giannatale, A.; Ceder, S.; Singh, S.; Williams, C.; Soplop, N.; Uryu, K.; Pharmer, L.; King, T.; Bojmar, L.; Davies, A.E.; Ararso, Y.; Zhang, T.; Zhang, H.; Hernandez, J.; Weiss, J.M.; Dumont-Cole, V.D.; Kramer, K.; Wexler, L.H.; Narendran, A.; Schwartz, G.K.; Healey, J.H.; Sandstrom, P.; Jørgen Labori, K.; Kure, E.H.; Grandgenett, P.M.; Hollingsworth, M.A.; de Sousa, M.; Kaur, S.; Jain, M.; Mallya, K.; Batra, S.K.; Jarnagin, W.R.; Brady, M.S.; Fodstad, O.; Muller, V.; Pantel, K.; Minn, A.J.; Bissell, M.J.; Garcia, B.A.; Kang, Y.; Rajasekhar, V.K.; Ghajar, C.M.; Matei, I.; Peinado, H.; Bromberg, J.; Lyden, D. Tumour exosome integrins determine organotropic metastasis. Nature, 2015, 527(7578), 329-335.
[http://dx.doi.org/10.1038/nature15756] [PMID: 26524530]
[13]
Rappsilber, J.; Mann, M.; Ishihama, Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat. Protoc., 2007, 2(8), 1896-1906.
[http://dx.doi.org/10.1038/nprot.2007.261] [PMID: 17703201]
[14]
Bunkenborg, J.; García, G.E.; Paz, M.I.P.; Andersen, J.S.; Molina, H. The minotaur proteome: Avoiding cross-species identifications deriving from bovine serum in cell culture models. Proteomics, 2010, 10(16), 3040-3044.
[http://dx.doi.org/10.1002/pmic.201000103] [PMID: 20641139]
[15]
Perkins, D.N.; Pappin, D.J.C.; Creasy, D.M.; Cottrell, J.S. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis, 1999, 20(18), 3551-3567.
[http://dx.doi.org/10.1002/(SICI)1522-2683(19991201)20:18<3551:AID-ELPS3551>3.0.CO;2-2] [PMID: 10612281]
[16]
Käll, L.; Canterbury, J.D.; Weston, J.; Noble, W.S.; MacCoss, M.J. Semi-supervised learning for peptide identification from shotgun proteomics datasets. Nat. Methods, 2007, 4(11), 923-925.
[http://dx.doi.org/10.1038/nmeth1113] [PMID: 17952086]
[17]
Liverani, E.; Banerjee, S.; Roberts, W.; Naseem, K.M.; Perretti, M. Prednisolone exerts exquisite inhibitory properties on platelet functions. Biochem. Pharmacol., 2012, 83(10), 1364-1373.
[http://dx.doi.org/10.1016/j.bcp.2012.02.006] [PMID: 22366284]
[18]
Chhabra, E.S.; Higgs, H.N. INF2 Is a WASP homology 2 motif-containing formin that severs actin filaments and accelerates both polymerization and depolymerization. J. Biol. Chem., 2006, 281(36), 26754-26767.
[http://dx.doi.org/10.1074/jbc.M604666200] [PMID: 16818491]
[19]
Goldsmith, A.M.; Hershenson, M.B.; Wolbert, M.P.; Bentley, J.K. Regulation of airway smooth muscle α-actin expression by glucocorticoids. Am. J. Physiol. Lung Cell. Mol. Physiol., 2007, 292(1), L99-L106.
[http://dx.doi.org/10.1152/ajplung.00269.2006] [PMID: 16980374]
[20]
Seene, T.; Alev, K. Effect of glucocorticoids on the turnover rate of actin and myosin heavy and light chains on different types of skeletal muscle fibres. J. Steroid Biochem., 1985, 22(6), 767-771.
[http://dx.doi.org/10.1016/0022-4731(85)90284-5] [PMID: 4021480]
[21]
da Silva, A.J.; Li, Z.; de Vera, C.; Canto, E.; Findell, P.; Rudd, C.E. Cloning of a novel T-cell protein FYB that binds FYN and SH2-domain-containing leukocyte protein 76 and modulates interleukin 2 production. Proc. Natl. Acad. Sci. USA, 1997, 94(14), 7493-7498.
[http://dx.doi.org/10.1073/pnas.94.14.7493] [PMID: 9207119]
[22]
Rajasekaran, K.; Kumar, P.; Schuldt, K.M.; Peterson, E.J.; Vanhaesebroeck, B.; Dixit, V.; Thakar, M.S.; Malarkannan, S. Signaling by Fyn-ADAP via the Carma1–Bcl-10–MAP3K7 signalosome exclusively regulates inflammatory cytokine production in NK cells. Nat. Immunol., 2013, 14(11), 1127-1136.
[http://dx.doi.org/10.1038/ni.2708] [PMID: 24036998]
[23]
Do, A.N.; Chun, Y.; Grishina, G.; Grishin, A.; Rogers, A.J.; Raby, B.A.; Weiss, S.T.; Vicencio, A.; Schadt, E.E.; Bunyavanich, S. Network study of nasal transcriptome profiles reveals master regulator genes of asthma. J. Allergy Clin. Immunol., 2021, 147(3), 879-893.
[http://dx.doi.org/10.1016/j.jaci.2020.07.006] [PMID: 32828590]
[24]
Swaminathan, R.; Ravi, V.K.; Kumar, S.; Kumar, M.V.S.; Chandra, N. Lysozyme. Adv. Protein Chem. Struct. Biol., 2011, 84, 63-111.
[http://dx.doi.org/10.1016/B978-0-12-386483-3.00003-3] [PMID: 21846563]
[25]
Masschalck, B.; Michiels, C.W. Antimicrobial properties of lysozyme in relation to foodborne vegetative bacteria. Crit. Rev. Microbiol., 2003, 29(3), 191-214.
[http://dx.doi.org/10.1080/713610448] [PMID: 14582617]
[26]
Ryberg, M.; Möller, C.; Ericson, T. Saliva composition in asthmatic patients after treatment with two dose levels of a β2-adrenoceptor agonist. Arch. Oral Biol., 1990, 35(12), 945-948.
[http://dx.doi.org/10.1016/0003-9969(90)90013-Z] [PMID: 1706174]
[27]
Ohbayashi, H.; Setoguchi, Y.; Fukuchi, Y.; Shibata, K.; Sakata, Y.; Arai, T. Pharmacological effects of lysozyme on COPD and bronchial asthma with sputum: A randomized, placebo-controlled, small cohort, cross-over study. Pulm. Pharmacol. Ther., 2016, 37, 73-80.
[http://dx.doi.org/10.1016/j.pupt.2016.03.001] [PMID: 26952317]
[28]
Ma, C.; Lv, Q.; Teng, S.; Yu, Y.; Niu, K.; Yi, C. Identifying key genes in rheumatoid arthritis by weighted gene co-expression network analysis. Int. J. Rheum. Dis., 2017, 20(8), 971-979.
[http://dx.doi.org/10.1111/1756-185X.13063] [PMID: 28440025]
[29]
van Wetering, S.; Tjabringa, G.S.; Hiemstra, P.S. Interactions between neutrophil-derived antimicrobial peptides and airway epithelial cells. J. Leukoc. Biol., 2005, 77(4), 444-450.
[http://dx.doi.org/10.1189/jlb.0604367] [PMID: 15591123]
[30]
Baines, K.J.; Simpson, J.L.; Wood, L.G.; Scott, R.J.; Gibson, P.G. Systemic upregulation of neutrophil -defensins and serine proteases in neutrophilic asthma. Thorax, 2011, 66(11), 942-947.
[http://dx.doi.org/10.1136/thx.2010.157719] [PMID: 21785157]
[31]
Gomez, J.L.; Yan, X.; Holm, C.T.; Grant, N.; Liu, Q.; Cohn, L.; Nezgovorova, V.; Meyers, D.A.; Bleecker, E.R.; Crisafi, G.M.; Jarjour, N.N.; Rogers, L.; Reibman, J.; Chupp, G.L. Characterisation of asthma subgroups associated with circulating YKL-40 levels. Eur. Respir. J., 2017, 50(4)1700800
[http://dx.doi.org/10.1183/13993003.00800-2017] [PMID: 29025889]
[32]
Kabakchiev, B.; Turner, D.; Hyams, J.; Mack, D.; Leleiko, N.; Crandall, W.; Markowitz, J.; Otley, A.R.; Xu, W.; Hu, P.; Griffiths, A.M.; Silverberg, M.S. Gene expression changes associated with resistance to intravenous corticosteroid therapy in children with severe ulcerative colitis. PLoS One, 2010, 5(9)e13085
[http://dx.doi.org/10.1371/journal.pone.0013085] [PMID: 20941359]
[33]
Ishizu, A.; Tomaru, U.; Masuda, S.; Sada, K.; Amano, K.; Harigai, M.; Kawaguchi, Y.; Arimura, Y.; Yamagata, K.; Ozaki, S.; Dobashi, H.; Homma, S.; Okada, Y.; Sugiyama, H.; Usui, J.; Tsuboi, N.; Matsuo, S.; Makino, H. Prediction of response to remission induction therapy by gene expression profiling of peripheral blood in Japanese patients with microscopic polyangiitis. Arthritis Res. Ther., 2017, 19(1), 117.
[http://dx.doi.org/10.1186/s13075-017-1328-7] [PMID: 28569178]
[34]
Dragicevic, S.; Milosevic, K.; Nestorovic, B.; Nikolic, A. Influence of the Polymorphism C-509T in the. Pediatr. Allergy Immunol. Pulmonol., 2017, 30(4), 239-245.
[http://dx.doi.org/10.1089/ped.2017.0770] [PMID: 35923018]
[35]
Chetaille Nézondet, A.L.; Poubelle, P.E.; Pelletier, M. The evaluation of cytokines to help establish diagnosis and guide treatment of autoinflammatory and autoimmune diseases. J. Leukoc. Biol., 2020, 108(2), 647-657.
[http://dx.doi.org/10.1002/JLB.5MR0120-218RRR] [PMID: 32040246]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy