Potential for Novel Therapeutic Uses of Alpha Lipoic Acid | Bentham Science
Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Potential for Novel Therapeutic Uses of Alpha Lipoic Acid

Author(s): Babatunde Fasipe, Andre Faria and Ismail Laher*

Volume 30, Issue 35, 2023

Published on: 21 December, 2022

Page: [3942 - 3954] Pages: 13

DOI: 10.2174/0929867329666221006115329

Price: $65

Open Access Journals Promotions 2
Abstract

Alpha-lipoic acid (ALA) is a potent antioxidant used in the management of diabetic neuropathy due to its ability to prevent neuronal lipid peroxidation. ALA also chelates transition metals, which can be beneficial in some diseases related to metal overload. Due to its unique antioxidant properties, ALA has potential novel applications in other diseases related to oxidative stress and inflammation. This review summarizes aspects of recent clinical trials and describes the uses of ALA in managing neuropathies. The unique pharmacological actions of ALA, coupled with relatively low toxicity, have led to several trials on the potential therapeutic uses of ALA in the management of diseases associated with increased oxidative stress, inflammation, and metal overload.

Keywords: Alpha lipoic acid, oxidative stress, inflammation, novel therapeutic use, lipid peroxidation, metal overload.

[1]
Golbidi, S.; Badran, M.; Laher, I. Diabetes and alpha lipoic Acid. Front. Pharmacol., 2011, 2, 69.
[http://dx.doi.org/10.3389/fphar.2011.00069] [PMID: 22125537]
[2]
Reed, L.J. From lipoic acid to multi-enzyme complexes. Protein Sci., 1998, 7(1), 220-224.
[http://dx.doi.org/10.1002/pro.5560070125] [PMID: 9514279]
[3]
Shay, K.P.; Moreau, R.F.; Smith, E.J.; Smith, A.R.; Hagen, T.M. Alpha-lipoic acid as a dietary supplement: Molecular mechanisms and therapeutic potential. Biochim. Biophys. Acta, Gen. Subj., 2009, 1790(10), 1149-1160.
[http://dx.doi.org/10.1016/j.bbagen.2009.07.026] [PMID: 19664690]
[4]
Snell, E.E.; Strong, F.M.; Peterson, W.H. Growth factors for bacteria. Biochem. J., 1937, 31(10), 1789-1799.
[http://dx.doi.org/10.1042/bj0311789] [PMID: 16746518]
[5]
Reed, L.J.; DeBusk, B.G.; Gunsalus, I.C.; Hornberger, C.S., Jr. Crystalline alpha-lipoic acid: A catalytic agent associated with pyruvate dehydrogenase. Science, 1951, 114(2952), 93-94.
[http://dx.doi.org/10.1126/science.114.2952.93] [PMID: 14854913]
[6]
Rezaei Zonooz, S.; Hasani, M.; Morvaridzadeh, M.; Beatriz Pizarro, A.; Heydari, H.; Yosaee, S.; Rezamand, G.; Heshmati, J. Effect of alpha-lipoic acid on oxidative stress parameters: A systematic review and meta-analysis. J. Funct. Foods, 2021, 87, 104774.
[http://dx.doi.org/10.1016/j.jff.2021.104774]
[7]
Shichiri, M. The role of lipid peroxidation in neurological disorders. J. Clin. Biochem. Nutr., 2014, 54(3), 151-160.
[http://dx.doi.org/10.3164/jcbn.14-10] [PMID: 24895477]
[8]
Li, D.W.; Wang, Y.D.; Zhou, S.Y.; Sun, W.P. α-lipoic acid exerts neuroprotective effects on neuronal cells by upregulating the expression of PCNA via the P53 pathway in neurodegenerative conditions. Mol. Med. Rep., 2016, 14(5), 4360-4366.
[http://dx.doi.org/10.3892/mmr.2016.5754] [PMID: 27665784]
[9]
Liu, D.; Xu, Y. p53, oxidative stress, and aging. Antioxid. Redox Signal., 2011, 15(6), 1669-1678.
[http://dx.doi.org/10.1089/ars.2010.3644] [PMID: 21050134]
[10]
Halliwell, B. Oxidants and human disease: Some new concepts. FASEB J., 1987, 1(5), 358-364.
[http://dx.doi.org/10.1096/fasebj.1.5.2824268] [PMID: 2824268]
[11]
Mariani, R.; Trombini, P.; Pozzi, M.; Piperno, A. Iron metabolism in thalassemia and sickle cell disease. Mediterr. J. Hematol. Infect. Dis., 2009, 1(1), e2009006.
[http://dx.doi.org/10.4084/MJHID.2009.006] [PMID: 21415988]
[12]
Fung, E.B.; Harmatz, P.; Milet, M.; Ballas, S.K.; De Castro, L.; Hagar, W.; Owen, W.; Olivieri, N.; Smith-Whitley, K.; Darbari, D.; Wang, W.; Vichinsky, E. Morbidity and mortality in chronically transfused subjects with thalassemia and sickle cell disease: A report from the multi-center study of iron overload. Am. J. Hematol., 2007, 82(4), 255-265.
[http://dx.doi.org/10.1002/ajh.20809] [PMID: 17094096]
[13]
Jozefczak, M.; Remans, T.; Vangronsveld, J.; Cuypers, A. Glutathione is a key player in metal-induced oxidative stress defenses. Int. J. Mol. Sci., 2012, 13(3), 3145-3175.
[http://dx.doi.org/10.3390/ijms13033145] [PMID: 22489146]
[14]
Suh, J.H.; Moreau, R.; Heath, S.H.D.; Hagen, T.M. Dietary supplementation with ( R )-α-lipoic acid reverses the age-related accumulation of iron and depletion of antioxidants in the rat cerebral cortex. Redox Rep., 2005, 10(1), 52-60.
[http://dx.doi.org/10.1179/135100005X21624] [PMID: 15829111]
[15]
Patrick, L. Mercury toxicity and antioxidants: Part 1: Role of glutathione and alpha-lipoic acid in the treatment of mercury toxicity. Altern. Med. Rev., 2002, 7(6), 456-471.
[PMID: 12495372]
[16]
Gerthoffer, W.T.; Singer, C.A. MAPK regulation of gene expression in airway smooth muscle. Respir. Physiol. Neurobiol., 2003, 137(2-3), 237-250.
[http://dx.doi.org/10.1016/S1569-9048(03)00150-2] [PMID: 14516729]
[17]
Hedges, J.C.; Singer, C.A.; Gerthoffer, W.T. Mitogen-activated protein kinases regulate cytokine gene expression in human airway myocytes. Am. J. Respir. Cell Mol. Biol., 2000, 23(1), 86-94.
[http://dx.doi.org/10.1165/ajrcmb.23.1.4014] [PMID: 10873157]
[18]
Singer, C.A.; Baker, K.J.; McCaffrey, A.; AuCoin, D.P.; Dechert, M.A.; Gerthoffer, W.T. p38 MAPK and NF-κB mediate COX-2 expression in human airway myocytes. Am. J. Physiol. Lung Cell. Mol. Physiol., 2003, 285(5), L1087-L1098.
[http://dx.doi.org/10.1152/ajplung.00409.2002] [PMID: 12871860]
[19]
Moini, H.; Tirosh, O.; Park, Y.C.; Cho, K.J.; Packer, L. R-alpha-lipoic acid action on cell redox status, the insulin receptor, and glucose uptake in 3T3-L1 adipocytes. Arch. Biochem. Biophys., 2002, 397(2), 384-391.
[http://dx.doi.org/10.1006/abbi.2001.2680] [PMID: 11795898]
[20]
Smith, A.R.; Shenvi, S.V.; Widlansky, M.; Suh, J.H.; Hagen, T.M. Lipoic acid as a potential therapy for chronic diseases associated with oxidative stress. Curr. Med. Chem., 2004, 11(9), 1135-1146.
[http://dx.doi.org/10.2174/0929867043365387] [PMID: 15134511]
[21]
Román-Pintos, L.M.; Villegas-Rivera, G.; Rodríguez-Carrizalez, A.D.; Miranda-Díaz, A.G.; Cardona-Muñoz, E.G. Diabetic polyneuropathy in type 2 diabetes mellitus: Inflammation, oxidative stress, and mitochondrial function. J. Diabetes Res., 2016, 2016, 3425617.
[http://dx.doi.org/10.1155/2016/3425617] [PMID: 28058263]
[22]
Packer, L.; Kraemer, K.; Rimbach, G. Molecular aspects of lipoic acid in the prevention of diabetes complications. Nutrition, 2001, 17(10), 888-895.
[http://dx.doi.org/10.1016/S0899-9007(01)00658-X] [PMID: 11684397]
[23]
Bierhaus, A.; Chevion, S.; Chevion, M.; Hofmann, M.; Quehenberger, P.; Illmer, T.; Luther, T.; Berentshtein, E.; Tritschler, H.; Müller, M.; Wahl, P.; Ziegler, R.; Nawroth, P.P. Advanced glycation end product-induced activation of NF-kappaB is suppressed by alpha-lipoic acid in cultured endothelial cells. Diabetes, 1997, 46(9), 1481-1490.
[http://dx.doi.org/10.2337/diab.46.9.1481] [PMID: 9287050]
[24]
Moura, F.; de Andrade, K.; Farias dos Santos, J.; Fonseca Goulart, M. Lipoic Acid: Its antioxidant and anti-inflammatory role and clinical applications. Curr. Top. Med. Chem., 2015, 15(5), 458-483.
[http://dx.doi.org/10.2174/1568026615666150114161358] [PMID: 25620240]
[25]
Pilar Valdecantos, M.; Prieto-Hontoria, P.L.; Pardo, V.; Módol, T.; Santamaría, B.; Weber, M.; Herrero, L.; Serra, D.; Muntané, J.; Cuadrado, A.; Moreno-Aliaga, M.J.; Alfredo Martínez, J.; Valverde, Á.M. Essential role of Nrf2 in the protective effect of lipoic acid against lipoapoptosis in hepatocytes. Free Radic. Biol. Med., 2015, 84, 263-278.
[http://dx.doi.org/10.1016/j.freeradbiomed.2015.03.019] [PMID: 25841776]
[26]
Wollin, S.D.; Jones, P.J.H. Alpha-lipoic acid and cardiovascular disease. J. Nutr., 2003, 133(11), 3327-3330.
[http://dx.doi.org/10.1093/jn/133.11.3327] [PMID: 14608040]
[27]
Dünschede, F.; Erbes, K.; Kircher, A.; Westermann, S.; Seifert, J.; Schad, A.; Oliver, K.; Kiemer, A.K.; Theodor, J. Reduction of ischemia reperfusion injury after liver resection and hepatic inflow occlusion by α-lipoic acid in humans. World J. Gastroenterol., 2006, 12(42), 6812-6817.
[http://dx.doi.org/10.3748/wjg.v12.i42.6812] [PMID: 17106930]
[28]
Ambrosi, N.; Arrosagaray, V.; Guerrieri, D.; Uva, P.D.; Petroni, J.; Herrera, M.B.; Iovanna, J.L.; León, L.; Incardona, C.; Eduardo Chuluyan, H.; Casadei, D.H. α-Lipoic acid protects against ischemia-reperfusion injury in simultaneous kidney-pancreas transplantation. Transplantation, 2016, 100(4), 908-915.
[http://dx.doi.org/10.1097/TP.0000000000000981] [PMID: 26502371]
[29]
Casciato, P.; Ambrosi, N.; Caro, F.; Vazquez, M.; Müllen, E.; Gadano, A.; de Santibañes, E.; de Santibañes, M.; Zandomeni, M.; Chahdi, M.; Lazarte, J.C.; Biagiola, D.A.; Iaquinandi, J.C.; Santofimia-Castaño, P.; Iovanna, J.; Incardona, C.; Chuluyan, E. α-lipoic acid reduces postreperfusion syndrome in human liver transplantation - a pilot study. Transpl. Int., 2018, 31(12), 1357-1368.
[http://dx.doi.org/10.1111/tri.13314] [PMID: 29974521]
[30]
Liakopoulos, V.; Roumeliotis, S.; Zarogiannis, S.; Eleftheriadis, T.; Mertens, P.R. Oxidative stress in hemodialysis: Causative mechanisms, clinical implications, and possible therapeutic interventions. Semin. Dial., 2019, 32(1), 58-71.
[http://dx.doi.org/10.1111/sdi.12745] [PMID: 30288786]
[31]
Khabbazi, T.; Mahdavi, R.; Safa, J.; Pour-Abdollahi, P. Effects of alpha-lipoic acid supplementation on inflammation, oxidative stress, and serum lipid profile levels in patients with end-stage renal disease on hemodialysis. J. Ren. Nutr., 2012, 22(2), 244-250.
[http://dx.doi.org/10.1053/j.jrn.2011.06.005] [PMID: 21908204]
[32]
Safa, J.; Ardalan, M.R.; Rezazadehsaatlou, M.; Mesgari, M.; Mahdavi, R.; Jadid, M.P. Effects of alpha lipoic acid supplementation on serum levels of IL-8 and TNF-α in patient with ESRD undergoing hemodialysis. Int. Urol. Nephrol., 2014, 46(8), 1633-1638.
[http://dx.doi.org/10.1007/s11255-014-0688-z] [PMID: 24729102]
[33]
Sydow, K.; Münzel, T. ADMA and oxidative stress. Atheroscler. Suppl., 2003, 4(4), 41-51.
[http://dx.doi.org/10.1016/S1567-5688(03)00033-3] [PMID: 14664902]
[34]
El-Nakib, G.; Mostafa, T.; Abbas, T.; El-Shishtawy, M.; Mabrouk, M.; Sobh, M. Role of alpha-lipoic acid in the management of anemia in patients with chronic renal failure undergoing hemodialysis. Int. J. Nephrol. Renovasc. Dis., 2013, 6, 161-168.
[http://dx.doi.org/10.2147/IJNRD.S49066] [PMID: 24023521]
[35]
Ahmadi, A.; Mazooji, N.; Roozbeh, J.; Mazloom, Z.; Hasanzade, J. Effect of alpha-lipoic acid and vitamin E supplementation on oxidative stress, inflammation, and malnutrition in hemodialysis patients. Iran. J. Kidney Dis., 2013, 7(6), 461-467.
[PMID: 24241092]
[36]
Himmelfarb, J.; Ikizler, T.A.; Ellis, C.; Wu, P.; Shintani, A.; Dalal, S.; Kaplan, M.; Chonchol, M.; Hakim, R.M. Provision of antioxidant therapy in hemodialysis (PATH): A randomized clinical trial. J. Am. Soc. Nephrol., 2014, 25(3), 623-633.
[http://dx.doi.org/10.1681/ASN.2013050545] [PMID: 24371300]
[37]
Vasdev, S.; Ann Ford, C.; Parai, S.; Longerich, L.; Gadag, V. Dietary α-lipoic acid supplementation lowers blood pressure in spontaneously hypertensive rats. J. Hypertens., 2000, 18(5), 567-573.
[http://dx.doi.org/10.1097/00004872-200018050-00009] [PMID: 10826559]
[38]
Mohammadi, V.; Khalili, M.; Eghtesadi, S.; Dehghani, S.; Jazayeri, S.; Aghababaee, S.K.; Sabour, H.; Saberi, H.; Eghtesadi, M.; Gohari, M.R. The effect of alpha-lipoic acid (ALA) supplementation on cardiovascular risk factors in men with chronic spinal cord injury: A clinical trial. Spinal Cord, 2015, 53(8), 621-624.
[http://dx.doi.org/10.1038/sc.2015.35] [PMID: 25753493]
[39]
Jamshidi, K.; Abdollahzad, H.; Nachvak, M.; Rezaei, M.; Golpayegani, M.R.; Sharifi Zahabi, E. Effects of alpha-lipoic acid supplementation on cardiovascular disease risk factors in β-thalassemia major patients: A clinical trial crossover study. J. Blood Med., 2020, 11, 131-139.
[http://dx.doi.org/10.2147/JBM.S252105] [PMID: 32494211]
[40]
Ng, M.; Fleming, T.; Robinson, M.; Thomson, B.; Graetz, N.; Margono, C.; Mullany, E.C.; Biryukov, S.; Abbafati, C.; Abera, S.F.; Abraham, J.P.; Abu-Rmeileh, N.M.E.; Achoki, T.; AlBuhairan, F.S.; Alemu, Z.A.; Alfonso, R.; Ali, M.K.; Ali, R.; Guzman, N.A.; Ammar, W.; Anwari, P.; Banerjee, A.; Barquera, S.; Basu, S.; Bennett, D.A.; Bhutta, Z.; Blore, J.; Cabral, N.; Nonato, I.C.; Chang, J.C.; Chowdhury, R.; Courville, K.J.; Criqui, M.H.; Cundiff, D.K.; Dabhadkar, K.C.; Dandona, L.; Davis, A.; Dayama, A.; Dharmaratne, S.D.; Ding, E.L.; Durrani, A.M.; Esteghamati, A.; Farzadfar, F.; Fay, D.F.J.; Feigin, V.L.; Flaxman, A.; Forouzanfar, M.H.; Goto, A.; Green, M.A.; Gupta, R.; Hafezi-Nejad, N.; Hankey, G.J.; Harewood, H.C.; Havmoeller, R.; Hay, S.; Hernandez, L.; Husseini, A.; Idrisov, B.T.; Ikeda, N.; Islami, F.; Jahangir, E.; Jassal, S.K.; Jee, S.H.; Jeffreys, M.; Jonas, J.B.; Kabagambe, E.K.; Khalifa, S.E.A.H.; Kengne, A.P.; Khader, Y.S.; Khang, Y.H.; Kim, D.; Kimokoti, R.W.; Kinge, J.M.; Kokubo, Y.; Kosen, S.; Kwan, G.; Lai, T.; Leinsalu, M.; Li, Y.; Liang, X.; Liu, S.; Logroscino, G.; Lotufo, P.A.; Lu, Y.; Ma, J.; Mainoo, N.K.; Mensah, G.A.; Merriman, T.R.; Mokdad, A.H.; Moschandreas, J.; Naghavi, M.; Naheed, A.; Nand, D.; Narayan, K.M.V.; Nelson, E.L.; Neuhouser, M.L.; Nisar, M.I.; Ohkubo, T.; Oti, S.O.; Pedroza, A.; Prabhakaran, D.; Roy, N.; Sampson, U.; Seo, H.; Sepanlou, S.G.; Shibuya, K.; Shiri, R.; Shiue, I.; Singh, G.M.; Singh, J.A.; Skirbekk, V.; Stapelberg, N.J.C.; Sturua, L.; Sykes, B.L.; Tobias, M.; Tran, B.X.; Trasande, L.; Toyoshima, H.; van de Vijver, S.; Vasankari, T.J.; Veerman, J.L.; Velasquez-Melendez, G.; Vlassov, V.V.; Vollset, S.E.; Vos, T.; Wang, C.; Wang, X.; Weiderpass, E.; Werdecker, A.; Wright, J.L.; Yang, Y.C.; Yatsuya, H.; Yoon, J.; Yoon, S.J.; Zhao, Y.; Zhou, M.; Zhu, S.; Lopez, A.D.; Murray, C.J.L.; Gakidou, E. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet, 2014, 384(9945), 766-781.
[http://dx.doi.org/10.1016/S0140-6736(14)60460-8] [PMID: 24880830]
[41]
Kucukgoncu, S.; Zhou, E.; Lucas, K.B.; Tek, C. Alpha-lipoic acid (ALA) as a supplementation for weight loss: Results from a meta-analysis of randomized controlled trials. Obes. Rev., 2017, 18(5), 594-601.
[http://dx.doi.org/10.1111/obr.12528] [PMID: 28295905]
[42]
Agarwal, A.; Leisegang, K.; Majzoub, A.; Adewoyin, M.; Henkel, R.; Finelli, R.; Selvam, M. K. P.; Tadros, N.; Parekh, N.; Ko, E. Y.; Cho, C. L.; Arafa, M.; Alves, M. G.; Oliveira, P. F.; Alvarez, J. G.; Shah, R. Utility of antioxidants in the treatment of male infertility: Clinical guidelines based on a systematic review and analysis of evidence. World J. Men's Health, 2021, 39(2), 233-290.
[PMID: 33474843]
[43]
Adewoyin, M.; Ibrahim, M.; Roszaman, R.; Isa, M.; Alewi, N.; Rafa, A.; Anuar, M. Male infertility: The effect of natural antioxidants and phytocompounds on seminal oxidative stress. Diseases, 2017, 5(1), 9.
[http://dx.doi.org/10.3390/diseases5010009] [PMID: 28933362]
[44]
Hodeeb, Y.M.; El-Rewiny, E.M.; Gaafar, A.M.; Zayed, A.N.; Hasan, M.S.; Elsaie, M.L. The effect of alpha lipoic acid supplementation on sperm functions in idiopathic asthenozoospermic patients: A case-controlled study. Hum. Fertil. (Camb.), 2022, 2025271.
[http://dx.doi.org/10.1080/14647273.2021.2025271] [PMID: 35023797]
[45]
Chang, J.W.; Lee, E.K.; Kim, T.H.; Min, W.K.; Chun, S.; Lee, K.U.; Kim, S.B.; Park, J.S. Effects of α-lipoic acid on the plasma levels of asymmetric dimethylarginine in diabetic end-stage renal disease patients on hemodialysis: A pilot study. Am. J. Nephrol., 2007, 27(1), 70-74.
[http://dx.doi.org/10.1159/000099035] [PMID: 17259696]
[46]
Masharani, U.; Gjerde, C.; Evans, J.L.; Youngren, J.F.; Goldfine, I.D. Effects of controlled-release alpha lipoic acid in lean, nondiabetic patients with polycystic ovary syndrome. J. Diabetes Sci. Technol., 2010, 4(2), 359-364.
[http://dx.doi.org/10.1177/193229681000400218] [PMID: 20307398]
[47]
Cianci, A.; Panella, M.; Fichera, M.; Falduzzi, C.; Bartolo, M.; Caruso, S. D-chiro -Inositol and alpha lipoic acid treatment of metabolic and menses disorders in women with PCOS. Gynecol. Endocrinol., 2015, 31(6), 483-486.
[http://dx.doi.org/10.3109/09513590.2015.1014784] [PMID: 25893270]
[48]
Di Paolo, G.; De Camilli, P. Phosphoinositides in cell regulation and membrane dynamics. Nature, 2006, 443(7112), 651-657.
[http://dx.doi.org/10.1038/nature05185] [PMID: 17035995]
[49]
D Genazzani, A. Effects of a combination of alpha lipoic acid and myo-inositol on insulin dynamics in overweight/obese patients with PCOS. Endocrinol. Metab. Syndr., 2014, 03, 32477.
[50]
Cappelli, V.; Di Sabatino, A.; Musacchio, M.C.; De Leo, V. Evaluation of a new association between insulin-sensitizers and α-lipoic acid in obese women affected by PCOS. Minerva Ginecol., 2013, 65(4), 425-433.
[PMID: 24051942]
[51]
Rago, R.; Marcucci, I.; Leto, G.; Caponecchia, L.; Salacone, P.; Bonanni, P.; Fiori, C.; Sorrenti, G.; Sebastianelli, A. Effect of myo-inositol and alpha-lipoic acid on oocyte quality in polycystic ovary syndrome non-obese women undergoing in vitro fertilization: A pilot study. J. Biol. Regul. Homeost. Agents, 2015, 29(4), 913-923.
[PMID: 26753656]
[52]
Heinz, T.; Schuchardt, J.P.; Möller, K.; Hadji, P.; Hahn, A. Low daily dose of 3 mg monacolin K from RYR reduces the concentration of LDL-C in a randomized, placebo-controlled intervention. Nutr. Res., 2016, 36(10), 1162-1170.
[http://dx.doi.org/10.1016/j.nutres.2016.07.005] [PMID: 27865358]
[53]
Morgante, G.; Cappelli, V.; Di Sabatino, A.; Massaro, M.G.; De Leo, V. Polycystic ovary syndrome (PCOS) and hyperandrogenism: The role of a new natural association. Minerva Ginecol., 2015, 67(5), 457-463.
[PMID: 26491824]
[54]
Becerra, J.E.; Khoury, M.J.; Cordero, J.F.; Erickson, J.D. Diabetes mellitus during pregnancy and the risks   for   specific birth defects: A   population-based   case-control   study. Pediatrics, 1990, 85(1), 1-9.
[http://dx.doi.org/10.1542/peds.85.1.1] [PMID: 2404255]
[55]
Kousseff, B.G. Diabetic embryopathy. Curr. Opin. Pediatr., 1999, 11(4), 348-352.
[http://dx.doi.org/10.1097/00008480-199908000-00014] [PMID: 10439209]
[56]
Coughlan, M.T.; Permezel, M.; Georgiou, H.M.; Rice, G.E. Repression of oxidant-induced nuclear factor-kappaB activity mediates placental cytokine responses in gestational diabetes. J. Clin. Endocrinol. Metab., 2004, 89(7), 3585-3594.
[http://dx.doi.org/10.1210/jc.2003-031953] [PMID: 15240650]
[57]
Sugimura, Y.; Murase, T.; Oyama, K.; Uchida, A.; Sato, N.; Hayasaka, S.; Kano, Y.; Takagishi, Y.; Hayashi, Y.; Oiso, Y.; Murata, Y. Prevention of neural tube defects by loss of function of inducible nitric oxide synthase in fetuses of a mouse model of streptozotocin-induced diabetes. Diabetologia, 2009, 52(5), 962-971.
[http://dx.doi.org/10.1007/s00125-009-1312-0] [PMID: 19283362]
[58]
Di Tomo, P.; Di Silvestre, S.; Cordone, V.G.P.; Giardinelli, A.; Faricelli, B.; Pipino, C.; Lanuti, P.; Peng, T.; Formoso, G.; Yang, D.; Arduini, A.; Chiarelli, F.; Pandolfi, A.; Di Pietro, N. Centella asiatica and lipoic acid, or a combination thereof, inhibit monocyte adhesion to endothelial cells from umbilical cords of gestational diabetic women. Nutr. Metab. Cardiovasc. Dis., 2015, 25(7), 659-666.
[http://dx.doi.org/10.1016/j.numecd.2015.04.002] [PMID: 26026207]
[59]
Leite, J.; Ross, P.; Rossi, A.C.; Jeanty, P. Prognosis of very large first-trimester hematomas. J. Ultrasound Med., 2006, 25(11), 1441-1445.
[http://dx.doi.org/10.7863/jum.2006.25.11.1441] [PMID: 17060431]
[60]
Nagy, S.; Bush, M.; Stone, J.; Lapinski, R.H.; Gardó, S. Clinical significance of subchorionic and retroplacental hematomas detected   in   the   first   trimester of pregnancy. Obstet. Gynecol., 2003, 102(1), 94-100.
[PMID: 12850613]
[61]
Wang, K.C.; Tsai, C.P.; Lee, C.L.; Chen, S.Y.; Lin, G.J.; Yen,   M.H.;   Sytwu,   H.K.;   Chen,   S.J. α-Lipoic   acid   enhances   endogenous   peroxisome-proliferator-activated receptor-γ   to   ameliorate     experimental   autoimmune encephalomyelitis in mice. Clin. Sci. (Lond.), 2013, 125(7), 329-340.
[http://dx.doi.org/10.1042/CS20120560] [PMID: 23550596]
[62]
Bao, P.; Kodra, A.; Tomic-Canic, M.; Golinko, M.S.; Ehrlich, H.P.; Brem, H. The role of vascular endothelial growth factor in wound healing. J. Surg. Res., 2009, 153(2), 347-358.
[http://dx.doi.org/10.1016/j.jss.2008.04.023] [PMID: 19027922]
[63]
Micili, S.C.; Goker, A.; Sayin, O.; Akokay, P.; Ergur, B.U. The effect of lipoic acid on wound healing in a full thickness uterine injury model in rats. J. Mol. Histol., 2013, 44(3), 339-345.
[http://dx.doi.org/10.1007/s10735-013-9485-8] [PMID: 23371355]
[64]
Monastra, G.; De Grazia, S.; Cilaker Micili, S.; Goker, A.; Unfer, V. Immunomodulatory activities of alpha lipoic acid with a special focus on its efficacy in preventing miscarriage. Expert Opin. Drug Deliv., 2016, 13(12), 1695-1708.
[http://dx.doi.org/10.1080/17425247.2016.1200556] [PMID: 27292272]
[65]
Porcaro, G.; Brillo, E.; Giardina, I.; Di Iorio, R. Alpha Lipoic Acid (ALA) effects on subchorionic hematoma: Preliminary clinical results. Eur. Rev. Med. Pharmacol. Sci., 2015, 19(18), 3426-3432.
[PMID: 26439038]
[66]
Costantino, M.; Guaraldi, C.; Costantino, D. Resolution of subchorionic hematoma and symptoms of threatened miscarriage using vaginal alpha lipoic acid or progesterone: Clinical evidences. Eur. Rev. Med. Pharmacol. Sci., 2016, 20(8), 1656-1663.
[PMID: 27160142]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy