Structural Perspective of Benzophenones Targeting Tubulin as Anticancer Agents | Bentham Science
Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

Structural Perspective of Benzophenones Targeting Tubulin as Anticancer Agents

Author(s): Prerna Chourasia, Vivek Asati, Shivangi Agarwal, Varsha Kashaw, Ratnesh Das and Sushil Kumar Kashaw*

Volume 23, Issue 1, 2023

Published on: 05 July, 2022

Page: [33 - 52] Pages: 20

DOI: 10.2174/1389557522666220602103104

Open Access Journals Promotions 2
Abstract

Cancer is the leading cause of death and the most significant determinant of life expectancy in almost every country in this twenty-first century. According to the World Health Organization (WHO), cancer is responsible for the leading cause of death globally. Benzophenone derivatives are found in a variety of naturally occurring compounds which are known to be pharmacologically efficacious against a variety of diseases, including cancer. Microtubules are thought to be a good target for cancer chemotherapies. Microtubule polymerization and depolymerization are induced by a variety of natural, synthetic, and semisynthetic chemicals having a benzophenone nucleus, affecting tubulin dynamics. Several medications that affect microtubule dynamics are in various stages of clinical trials, including Combretastatins (phase II), Vincristine (clinically approved), Paclitaxel (in clinical usage), and epothilone (phase III), and only a few have been patented. Benzophenone derivatives target the colchicine binding site of microtubules, damage them and cause cell cycle arrest in the G2-M phase. Belonging to this class of molecules, phenstatin, a potent inhibitor of tubulin polymerization, has shown strongly inhibit cancer cell growth and arrest the G2/M phase of the cell cycle by targeting the colchicine binding site of microtubules. In the present manuscript, we described the benzophenone as tubulin polymerization inhibitors, their Structure-Activity Relationships (SARs) and molecular docking studies that reveal its binding affinity with the colchicine binding site.

Keywords: Microtubule targeting agents, SAR, G2-M phase, benzophenone analogues, colchicine binding site, tubulin polymerization inhibitor, molecular docking.

Graphical Abstract
[1]
Roy, P.S.; Saikia, B.J. Cancer and cure: A critical analysis. Indian J. Cancer, 2016, 53(3), 441-442.
[PMID: 28244479]
[2]
Jemal, A.; Bray, F.; Ferlay, J.; Ward, E. Global cancer statics. CA Cancer J. Clin., 2011, 61(2), 69-90.
[3]
Tower, H.; Ruppert, M.; Britt, K. The immune microenvironment of breast cancer progression. Cancers (Basel), 2019, 11(9), 1375.
[http://dx.doi.org/10.3390/cancers11091375] [PMID: 31527531]
[4]
Jawad, A.M.; Jawad, F.M. Review on cancer and tumor diseases. Int. J. Oncol. Cancer Ther., 2015, 1(1), 1-14.
[5]
American Cancer Society. Sings and symptoms of cancer. 2014, 1-8.
[6]
Hausman, D.M. What is cancer? Perspect. Biol. Med., 2019, 62(4), 778-784.
[http://dx.doi.org/10.1353/pbm.2019.0046] [PMID: 31761807]
[7]
Torre, L.A.; Siegel, R.L.; Ward, E.M.; Jemal, A. Global cancer incidence and Mortality rates and Trends-An update. Cancer Epidemiol. Biomarkers Prev., 2016, 25(1), 16-27.
[http://dx.doi.org/10.1158/1055-9965.EPI-15-0578] [PMID: 26667886]
[8]
Ashworth, A.; Lord, C.J.; Reis-Filho, J.S. Genetic interactions in cancer progression and treatment. Cell Press J., 2011, 145(1), 30-38.
[9]
Malarkey, D.E.; Hoenerhoff, M.J.; Maronpot, R.R. Chapter 6-Carcinogenesis: Manifestation and mechanisms. In: Fundamentals of Toxicologic Pathology (Third Edition); Wallig, M.; Bolon, B.; Haschek, W.; Rousseaux, C., Eds.; Academic Press: Cambridge, Massachusetts, USA, 2018; pp. 83-104.
[10]
Hassanpour, S.H.; Dehghani, M. Review of cancer from perspective of molecular. J. Cancer Res. Pract., 2017, 4(4), 127-129.
[http://dx.doi.org/10.1016/j.jcrpr.2017.07.001]
[11]
Basu, A.K. DNA damage, mutagenesis and cancer. Int. J. Mol. Sci., 2018, 19(4), 970.
[http://dx.doi.org/10.3390/ijms19040970] [PMID: 29570697]
[12]
Wiesmüller, L.; Ford, J.M.; Schiestl, R.H. DNA damage, repair, and diseases. J. Biomed. Biotechnol., 2002, 2(2), 45.
[http://dx.doi.org/10.1155/S1110724302001985] [PMID: 12488582]
[13]
Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer, 2015, 136(5), E359-E386.
[http://dx.doi.org/10.1002/ijc.29210] [PMID: 25220842]
[14]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics. CA Cancer J. Clin., 2016, 66(1), 7-30.
[15]
De Leo, S.; Trevisan, M.; Fugazzola, L. Recent advances in the management of anaplastic thyroid cancer. Thyroid Res., 2020, 13(1), 17.
[http://dx.doi.org/10.1186/s13044-020-00091-w] [PMID: 33292371]
[16]
Yoon, S.S.; Hochberg, E.P. Chemotherapy is an effective first line treatment for early stage gastric mucosa-associated lymphoid tissue lymphoma. Cancer Treat. Rev., 2006, 32(2), 139-143.
[http://dx.doi.org/10.1016/j.ctrv.2006.01.006] [PMID: 16524666]
[17]
Pérez-Herrero, E.; Fernández-Medarde, A. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy. Eur. J. Pharm. Biopharm., 2015, 93, 52-79.
[http://dx.doi.org/10.1016/j.ejpb.2015.03.018] [PMID: 25813885]
[18]
Johnstone, R.W.; Ruefli, A.A.; Lowe, S.W. Apoptosis: A link between cancer genetics and chemotherapy. Cell, 2002, 108(2), 153-164.
[http://dx.doi.org/10.1016/S0092-8674(02)00625-6] [PMID: 11832206]
[19]
Mohd-Zahid, M.H.; Mohamud, R.; Abdullah, C.A.; Lim, J.; Alem, H.; Hanaffi, W.N. Colorectal cancer stem cells: A review of targeted drug delivery by gold nanoparticles. R. Soc. Chem., 2020, 10(2), 973-985.
[http://dx.doi.org/10.1039/C9RA08192E]
[20]
Hsieh, H.P.; Liou, J.P.; Lin, Y.T.; Mahindroo, N.; Chang, J.Y.; Yang, Y.N.; Chern, S.S.; Tan, U.K.; Chang, C.W.; Chen, T.W.; Lin, C.H.; Chang, Y.Y.; Wang, C.C. Structure-activity and crystallographic analysis of benzophenone derivatives-the potential anticancer agents. Bioorg. Med. Chem. Lett., 2003, 13(1), 101-105.
[http://dx.doi.org/10.1016/S0960-894X(02)00850-8] [PMID: 12467626]
[21]
Darwati, D.; Safitri, A.N.; Ambardhani, N.; Mayanti, T.; Nurlelasari, N.; Kurnia, D. Kurnia. Effectiveness and anticancer activity of a novel phenolic compound from Garcinia porrecta against the MCF-7 breast cancer cell line in vitro and in silico. Drug Des. Devel. Ther., 2021, 15, 3523-3533.
[http://dx.doi.org/10.2147/DDDT.S321824] [PMID: 34408404]
[22]
Khanum, S.A.; Shashikanth, S.; Deepak, A.V. Synthesis and anti-inflammatory activity of benzophenone analogues. Bioorg. Chem., 2004, 32(4), 211-222.
[http://dx.doi.org/10.1016/j.bioorg.2004.04.003] [PMID: 15210336]
[23]
Ferris, R.G.; Hazen, R.J.; Roberts, G.B.; St Clair, M.H.; Chan, J.H.; Romines, K.R.; Freeman, G.A.; Tidwell, J.H.; Schaller, L.T.; Cowan, J.R.; Short, S.A.; Weaver, K.L.; Selleseth, D.W.; Moniri, K.R.; Boone, L.R. Antiviral activity of GW678248, a novel benzophenone nonnucleoside reverse transcriptase inhibitor. Antimicrob. Agents Chemother., 2005, 49(10), 4046-4051.
[http://dx.doi.org/10.1128/AAC.49.10.4046-4051.2005] [PMID: 16189079]
[24]
Vooturi, S.K.; Cheung, C.M.; Rybak, M.J.; Firestine, S.M. Design, synthesis, and structure-activity relationships of benzophenone-based tetraamides as novel antibacterial agents. J. Med. Chem., 2009, 52(16), 5020-5031.
[http://dx.doi.org/10.1021/jm900519b] [PMID: 19653650]
[25]
Mahajan, S.; Kamath, V.; Nayak, S.; Vaidya, S. QSAR analysis of benzophenone derivatives as antimalarial agents. Indian J. Pharm. Sci., 2012, 74(1), 41-47.
[http://dx.doi.org/10.4103/0250-474X.102542] [PMID: 23204621]
[26]
Hong, Y.; Zhu, Y.Y.; He, Q.; Gu, S.X. Indole derivatives as tubulin polymerization inhibitors for the development of promising anticancer agents. Bioorg. Med. Chem., 2021, 55, 116597.
[http://dx.doi.org/10.1016/j.bmc.2021.116597] [PMID: 34995858]
[27]
Morrissette, N. Targeting toxoplasma tubules: tubulin, microtubules, and associated proteins in a human pathogen. Eukaryot. Cell, 2015, 14(1), 2-12.
[http://dx.doi.org/10.1128/EC.00225-14] [PMID: 25380753]
[28]
Machado-Oliveira, G.; Ramos, C.; Marques, A.R.A.; Vieira, O.V. Cell senescence, multiple organelle dysfunction and atherosclerosis. Cells, 2020, 9(10), 2146.
[http://dx.doi.org/10.3390/cells9102146] [PMID: 32977446]
[29]
Anesti, V.; Scorrano, L. The relationship between mitochondrial shape and function and the cytoskeleton. Biochim. Biophys. Acta, 2006, 1757(5-6), 692-699.
[http://dx.doi.org/10.1016/j.bbabio.2006.04.013] [PMID: 16729962]
[30]
Melkikh, A.V.; Sutormina, M. Intra- and intercellular transport of substances: Models and mechanisms. Prog. Biophys. Mol. Biol., 2020, 150, 184-202.
[http://dx.doi.org/10.1016/j.pbiomolbio.2019.10.004] [PMID: 31678255]
[31]
Kaur, R.; Kaur, G.; Gill, R.K.; Soni, R.; Bariwal, J. Recent developments in tubulin polymerization inhibitors: An overview. Eur. J. Med. Chem., 2014, 87, 89-124.
[http://dx.doi.org/10.1016/j.ejmech.2014.09.051] [PMID: 25240869]
[32]
Goyal, S.S.; Patel, R.M.; Sukhramani, P.S.; Kamothi, K.A. Microtubule: A novel target for cancer therapy. Int. J. Pharm. Sci. Res., 2010, 1(4), 1-21.
[33]
Gudimchuk, N.B.; McIntosh, J.R. Regulation of microtubule dynamics, mechanics and function through the growing tip. Nat. Rev. Mol. Cell Biol., 2021, 22(12), 777-795.
[http://dx.doi.org/10.1038/s41580-021-00399-x] [PMID: 34408299]
[34]
Jordan, A.; Hadfield, J.A.; Lawrence, N.J.; McGown, A.T. Tubulin as a target for anticancer drugs: Agents which interact with the mitotic spindle. Med. Res. Rev., 1998, 18(4), 259-296.
[http://dx.doi.org/10.1002/(SICI)1098-1128(199807)18:4<259:AID-MED3>3.0.CO;2-U] [PMID: 9664292]
[35]
Mukhtar, E.; Adhami, V.M.; Mukhtar, H. Targeting microtubules by natural agents for cancer therapy. Mol. Cancer Ther., 2014, 13(2), 275-284.
[http://dx.doi.org/10.1158/1535-7163.MCT-13-0791] [PMID: 24435445]
[36]
McGrogan, B.T.; Gilmartin, B.; Carney, D.N.; McCann, D.N.; McCann, A. Taxanes, microtubules and chemoresistant breast cancer. Bio-chim. Biophys. Acta -. Rev. Can., 2008, 1785(2), 96-132.
[37]
Wordeman, L.; Vicente, J.J. Microtubule targeting agents in disease: Classic drugs, novel roles. Cancers (Basel), 2021, 13(22), 5650.
[http://dx.doi.org/10.3390/cancers13225650] [PMID: 34830812]
[38]
Prota, A.E.; Bargsten, K.; Diaz, J.F.; Marsh, M.; Cuevas, C.; Liniger, M.; Neuhaus, C.; Andreu, J.M.; Altmann, K.H.; Steinmetz, M.O. A new tubulin-binding site and pharmacophore for microtubule-destabilizing anticancer drugs. Proc. Natl. Acad. Sci. USA, 2014, 111(38), 13817-13821.
[http://dx.doi.org/10.1073/pnas.1408124111] [PMID: 25114240]
[39]
Tian, Z.; Chu, Y.; Wang, H.; Zhong, L.; Deng, M.; Li, W. Biological activity and interaction mechanism of the diketopiperazine derivatives as tubulin polymerization inhibitors. RSC Advances, 2018, 8(2), 1055-1064.
[http://dx.doi.org/10.1039/C7RA12173C]
[40]
Cao, Y.N.; Zheng, L.L.; Wang, D.; Liang, X.X.; Gao, F.; Zhou, X.L. Recent advances in microtubule-stabilizing agents. Eur. J. Med. Chem., 2018, 143, 806-828.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.062] [PMID: 29223097]
[41]
Akhmanova, A.; Steinmetz, M.O. Tracking the ends: A dynamic protein network controls the fate of microtubule tips. Nat. Rev. Mol. Cell Biol., 2008, 9(4), 309-322.
[http://dx.doi.org/10.1038/nrm2369] [PMID: 18322465]
[42]
Barreca, M.; Stathis, A.; Barraja, P.; Bertoni, F. An overview on anti-tubulin agents for the treatment of lymphoma patients. Pharmacol. Ther., 2020, 211, 107552.
[http://dx.doi.org/10.1016/j.pharmthera.2020.107552] [PMID: 32305312]
[43]
Field, J.J.; Díaz, J.F.; Miller, J.H. The binding sites of microtubule-stabilizing agents. Chem. Biol., 2013, 20(3), 301-315.
[http://dx.doi.org/10.1016/j.chembiol.2013.01.014] [PMID: 23521789]
[44]
Downing, K.H. Structural basis for the interaction of tubulin with proteins and drugs that affect microtubule dynamics. Annu. Rev. Cell Dev. Biol., 2000, 16(1), 89-111.
[http://dx.doi.org/10.1146/annurev.cellbio.16.1.89] [PMID: 11031231]
[45]
Dorsey, J.F.; Dowling, M.L.; Kim, M.; Voong, R.; Solin, L.J.; Kao, G.D. Modulation of the anti-cancer efficacy of microtubule-targeting agents by cellular growth conditions. Cancer Biol. Ther., 2010, 9(10), 809-818.
[http://dx.doi.org/10.4161/cbt.9.10.11453] [PMID: 20234172]
[46]
Ojima, I.; Kumar, K.; Awasthi, D.; Vineberg, J.G. Drug discovery targeting cell division proteins, microtubules and FtsZ. Bioorg. Med. Chem., 2014, 22(18), 5060-5077.
[http://dx.doi.org/10.1016/j.bmc.2014.02.036] [PMID: 24680057]
[47]
Arnst, K.E.; Wang, Y.; Hwang, D.J.; Xue, Y.; Costello, T.; Hamilton, D.; Chen, Q.; Yang, J.; Park, F.; Dalton, J.T.; Miller, D.D.; Li, W. A potent, metabolically stable tubulin inhibitor targets the colchicine binding site and overcomes taxane resistance. Cancer Res., 2018, 78(1), 265-277.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-0577] [PMID: 29180476]
[48]
Lu, Y.; Chen, J.; Xiao, M.; Li, W.; Miller, D.D. An overview of tubulin inhibitors that interact with the colchicine binding site. Pharm. Res., 2012, 29(11), 2943-2971.
[http://dx.doi.org/10.1007/s11095-012-0828-z] [PMID: 22814904]
[49]
Li, L.; Jiang, S.; Li, X.; Liu, Y.; Su, J.; Chen, J. Recent advances in trimethoxyphenyl (TMP) based tubulin inhibitors targeting the colchicine binding site. Eur. J. Med. Chem., 2018, 151(10), 482-494.
[http://dx.doi.org/10.1016/j.ejmech.2018.04.011] [PMID: 29649743]
[50]
Banerjee, S.; Hwang, D.J.; Li, W.; Miller, D.D. Current advances of tubulin inhibitors in nanoparticle drug delivery and vascular disrup-tion/angiogenesis. Molecules, 2016, 21(11), 1468.
[http://dx.doi.org/10.3390/molecules21111468] [PMID: 27827858]
[51]
Orsini, F.; Sello, G. Natural stilbenes and analogues as antineoplastic agents. Studies in Natural Products Chemistry., 2008, 34, 77-127.
[http://dx.doi.org/10.1016/S1572-5995(08)80025-7]
[52]
Chen, J.; Ye, L.; Su, W. Palladium-catalyzed direct addition of arylboronic acids to 2-aminobenzonitrile derivatives: Synthesis, biological evaluation and in silico analysis of 2-aminobenzophenones, 7-benzoyl-2-oxoindolines, and 7-benzoylindoles. Org. Biomol. Chem., 2014, 12(41), 8204-8211.
[http://dx.doi.org/10.1039/C4OB00978A] [PMID: 25198908]
[53]
Zang, S.; An, B.; Yan, J.; Huang, L.; Li, X. The synthesis and evaluation of new benzophenone derivatives as tubulin polymerization inhibitors. R. Soc. Chem., 2016, 6(91), 88453-88462.
[54]
Chuang, H.Y.; Chang, J.Y.; Lai, M.J.; Kuo, C.C.; Lee, H.Y.; Hsieh, H.P.; Chen, Y.J.; Chen, L.T.; Pan, W.Y.; Liou, J.P. 2-amino-3,4,5-trimethoxybenzophenones as potent tubulin polymerization inhibitors. ChemMedChem, 2011, 6(3), 450-456.
[http://dx.doi.org/10.1002/cmdc.201000479] [PMID: 21360819]
[55]
Singh, R.K.; Prasad, D.N.; Bhardwaj, T.R. Design, synthesis and evaluation of aminobenzophenone derivatives containing nitrogen mustard moiety as potential central nervous system antitumor agent. Med. Chem. Res., 2013, 22(12), 5901-5911.
[http://dx.doi.org/10.1007/s00044-013-0582-8]
[56]
Yamazaki, Y.; Sumikura, M.; Masuda, Y.; Hayashi, Y.; Yasui, H.; Kiso, Y.; Chinen, T.; Usui, T.; Yakushiji, F.; Potts, B.; Neuteboom, S.; Palladino, M.; Lloyd, G.K.; Hayashi, Y. Synthesis and structure-activity relationships of benzophenone-bearing diketopiperazine-type anti-microtubule agents. Bioorg. Med. Chem., 2012, 20(14), 4279-4289.
[http://dx.doi.org/10.1016/j.bmc.2012.05.059] [PMID: 22727370]
[57]
Kamal, A.; Reddy, ChR.; Vishnuvardhan, M.V.; Mahesh, R. Lakshma Nayak, V.; Prabhakar, S.; Reddy, C.S. Synthesis and biological evaluation of cinnamido linked benzophenone hybrids as tubulin polymerization inhibitors and apoptosis inducing agents. Bioorg. Med. Chem. Lett., 2014, 24(10), 2309-2314.
[http://dx.doi.org/10.1016/j.bmcl.2014.03.076] [PMID: 24736114]
[58]
Liou, J.P.; Chang, C.W.; Song, J.S.; Yang, Y.N.; Yeh, C.F.; Tseng, H.Y.; Lo, Y.K.; Chang, Y.L.; Chang, C.M.; Hsieh, H.P. Synthesis and structure-activity relationship of 2-aminobenzophenone derivatives as antimitotic agents. J. Med. Chem., 2002, 45(12), 2556-2562.
[http://dx.doi.org/10.1021/jm010365+] [PMID: 12036364]
[59]
Liou, J.P.; Chang, J.Y.; Chang, C.W.; Chang, C.Y.; Mahindroo, N.; Kuo, F.M.; Hsieh, H.P. Synthesis and structure-activity relationships of 3-aminobenzophenones as antimitotic agents. J. Med. Chem., 2004, 47(11), 2897-2905.
[http://dx.doi.org/10.1021/jm0305974] [PMID: 15139768]
[60]
Cortez-Maya, S.; Cortes, E.C.; Herna’ndez-Ortega, S.; Apan, T.R.; Martı’nez-Garcı’a, M. Synthesis of 2- aminobenzophenone derivatives and their anticancer activity. Synth. Commun., 2012, 42(1), 46-54.
[http://dx.doi.org/10.1080/00397911.2010.521435]
[61]
Hayashi, Y.; Takeno, H.; Chinen, T.; Muguruma, K.; Okuyama, K.; Taguchi, A.; Takayama, K.; Yakushiji, F.; Miura, M.; Usui, T.; Hayashi, Y. Development of a new benzophenone-diketopiperazine-type potent antimicrotubule agent possessing a 2-pyridine structure. ACS Med. Chem. Lett., 2014, 5(10), 1094-1098.
[http://dx.doi.org/10.1021/ml5001883] [PMID: 25313318]
[62]
Zabiulla; Shamanth Neralagundi, H.G.; Bushra Begum, A.; Prabhakar, B.T.; Khanum, S.A. Design and synthesis of diamide-coupled benzophenones as potential anticancer agents. Eur. J. Med. Chem., 2016, 115, 342-351.
[http://dx.doi.org/10.1016/j.ejmech.2016.03.040]
[63]
Al-Ghorbani, M.; Thirusangu, P.; Gurupadaswamy, H.D.; Vigneshwaran, V.; Mohammed, Y.H.; Prabhakar, B.T.; Khanum, S.A. Synthesis of novel morpholine conjugated benzophenone analogues and evaluation of antagonistic role against neoplastic development. Bioorg. Chem., 2017, 71, 55-66.
[http://dx.doi.org/10.1016/j.bioorg.2017.01.011] [PMID: 28139247]
[64]
Lakshmi Ranganatha, V.; Zameer, F.; Meghashri, S.; Rekha, N.D.; Girish, V.; Gurupadaswamy, H.D.; Khanum, S.A. Design, synthesis, and anticancer properties of novel benzophenone-conjugated coumarin analogs. Arch. Pharm. (Weinheim), 2013, 346(12), 901-911.
[http://dx.doi.org/10.1002/ardp.201300298] [PMID: 24170414]
[65]
Chang, C.Y.; Chuang, H.Y.; Lee, H.Y.; Yeh, T.K.; Kuo, C.C.; Chang, C.Y.; Chang, J.Y.; Liou, J.P. Antimitotic and vascular disrupting agents: 2-hydroxy-3,4,5-trimethoxybenzophenones. Eur. J. Med. Chem., 2014, 77, 306-314.
[http://dx.doi.org/10.1016/j.ejmech.2014.02.061] [PMID: 24657567]
[66]
Costa, E.; Sousa, E.; Nazareth, N.; Nascimento, M.S.J.; Pinto, M.M.M. Synthesis of xanthones and benzophenones as inhibitors of tumor cell growth. Lett. Drug Des. Discov., 2010, 7, 487-493.
[http://dx.doi.org/10.2174/157018010791526250]
[67]
Wang, G.; Liu, W.; Tang, J.; Ma, X.; Gong, Z.; Huang, Y.; Li, Y.; Peng, Z. Design, synthesis, and anticancer evaluation of benzophenone derivatives bearing naphthalene moiety as novel tubulin polymerization inhibitors. Bioorg. Chem., 2020, 104, 104265.
[http://dx.doi.org/10.1016/j.bioorg.2020.104265] [PMID: 32919128]
[68]
Ashok, D.; Radhika, G. Synthesis and biological evaluation of amide derivatives of benzophenone derivatives as anticancer agents. J. Chem. Pharm. Res., 2016, 8(12), 167-172.
[69]
Kumazawa, E.; Hirotani, K.; Burford, S.C.; Kawagoe, K.; Miwa, T.; Mitsui, I.; Ejima, A. Synthesis and antitumor activity of novel benzop-henone derivatives. Chem. Pharm. Bull. (Tokyo), 1997, 45(9), 1470-1474.
[http://dx.doi.org/10.1248/cpb.45.1470] [PMID: 9331999]

© 2024 Bentham Science Publishers | Privacy Policy