Stem Cells and Congenital Heart Disease: The Future Potential Clinical Therapy Beyond Current Treatment | Bentham Science
Generic placeholder image

Current Cardiology Reviews

Editor-in-Chief

ISSN (Print): 1573-403X
ISSN (Online): 1875-6557

Mini-Review Article

Stem Cells and Congenital Heart Disease: The Future Potential Clinical Therapy Beyond Current Treatment

Author(s): Katherine Julian*, Nikita Garg, Narutoshi Hibino and Rohit Jain

Volume 19, Issue 2, 2023

Published on: 29 August, 2022

Article ID: e310522205424 Pages: 4

DOI: 10.2174/1573403X18666220531093326

Price: $65

Open Access Journals Promotions 2
Abstract

Congenital heart disease (CHD) is the most common congenital anomaly in newborns. Current treatment for cyanotic CHD largely relies on the surgical intervention; however, significant morbidity and mortality for patients with CHD remain. Recent research to explore new avenues of treating CHD includes the utility of stem cells within the field. Stem cells have since been used to both model and potentially treat CHD. Most clinical applications to date have focused on hypoplastic left heart syndrome. Here, we examine the current role of stem cells in CHD and discuss future applications within the field.

Keywords: Stem cell, congenital heart disease, hypoplastic left heart, tissue engineering, regenerative medicine, cardiology.

Graphical Abstract
[1]
Hoffman JI, Kaplan S. The incidence of congenital heart disease. J Am Coll Cardiol 2002; 39(12): 1890-900.
[http://dx.doi.org/10.1016/S0735-1097(02)01886-7] [PMID: 12084585]
[2]
Reller MD, Strickland MJ, Riehle-Colarusso T, Mahle WT, Correa A. Prevalence of congenital heart defects in metropolitan Atlanta, 1998-2005. J Pediatr 2008; 153(6): 807-13.
[http://dx.doi.org/10.1016/j.jpeds.2008.05.059] [PMID: 18657826]
[3]
Oster ME, Lee KA, Honein MA, Riehle-Colarusso T, Shin M, Correa A. Temporal trends in survival among infants with critical congenital heart defects. Pediatrics 2013; 131(5): e1502-8.
[http://dx.doi.org/10.1542/peds.2012-3435] [PMID: 23610203]
[4]
van der Bom T, Zomer AC, Zwinderman AH, Meijboom FJ, Bouma BJ, Mulder BJ. The changing epidemiology of congenital heart disease. Nat Rev Cardiol 2011; 8(1): 50-60.
[http://dx.doi.org/10.1038/nrcardio.2010.166] [PMID: 21045784]
[5]
Wu W, He J, Shao X. Incidence and mortality trend of congenital heart disease at the global, regional, and national level, 1990-2017. Medicine 2020; 99(23): e20593.
[http://dx.doi.org/10.1097/MD.0000000000020593] [PMID: 32502030]
[6]
Wang Q, Zhu C, Sun M, et al. Maternal obesity impairs fetal cardiomyocyte contractile function in sheep. FASEB J 2019; 33(2): 2587-98.
[http://dx.doi.org/10.1096/fj.201800988R] [PMID: 30289749]
[7]
Sun J, Chen X, Chen H, Ma Z, Zhou J. Maternal alcohol consumption before and during pregnancy and the risks of congenital heart defects in offspring: A systematic review and meta-analysis. Congenit Heart Dis 2015; 10(5): E216-24.
[http://dx.doi.org/10.1111/chd.12271] [PMID: 26032942]
[8]
Lynch TA, Abel DE. Teratogens and congenital heart disease. J Diagn Med Sonogr 2015; 31(5): 301-5.
[http://dx.doi.org/10.1177/8756479315598524]
[9]
Fahed AC, Gelb BD, Seidman JG, Seidman CE. Genetics of congenital heart disease: The glass half empty. Circ Res 2013; 112(4): 707-20.
[http://dx.doi.org/10.1161/CIRCRESAHA.112.300853] [PMID: 23410880]
[10]
Gilboa SM, Devine OJ, Kucik JE, et al. Congenital heart defects in the United States: Estimating the magnitude of the affected population in 2010. Circulation 2016; 134(2): 101-9.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.115.019307] [PMID: 27382105]
[11]
Ministeri M, Alonso-Gonzalez R, Swan L, Dimopoulos K. Common long-term complications of adult congenital heart disease: Avoid falling in a H.E.A.P. Expert Rev Cardiovasc Ther 2016; 14(4): 445-62.
[http://dx.doi.org/10.1586/14779072.2016.1133294] [PMID: 26678842]
[12]
Zhang J, Wilson GF, Soerens AG, et al. Functional cardiomyocytes derived from human induced pluripotent stem cells. Circ Res 2009; 104(4): e30-41.
[http://dx.doi.org/10.1161/CIRCRESAHA.108.192237] [PMID: 19213953]
[13]
Min Z, Gao Q, Zhen X, et al. New insights into the genic and metabolic characteristics of induced pluripotent stem cells from polycystic ovary syndrome women. Stem Cell Res Ther 2018; 9(1): pp1-13.
[http://dx.doi.org/10.1186/s13287-018-0950-x]
[14]
Chen W, Huang J, Yu X, Lin X, Dai Y. Generation of induced pluripotent stem cells from renal tubular cells of a patient with Alport syndrome. Int J Nephrol Renovasc Dis 2015; 8: 101-9.
[http://dx.doi.org/10.2147/IJNRD.S85733]
[15]
Rikhtegar R, Pezeshkian M, Dolati S, et al. Stem cells as therapy for heart disease: iPSCs, ESCs, CSCs, and skeletal myoblasts. Biomed Pharmacother 2019; 109: 304-13.
[http://dx.doi.org/10.1016/j.biopha.2018.10.065] [PMID: 30396088]
[16]
Gao Y, Jacot JG. Stem cells and progenitor cells for tissueengineered solutions to congenital heart defects Biomark Insights 2015; 10, 99. BMI-s20058.
[http://dx.doi.org/10.4137/BMI.S20058]
[17]
What are stem cells?: Stem cells: University of nebraska medical center. Available from: https://www.unmc.edu/stemcells/stemcells/
[18]
Stamm C, Nasseri B, Choi YH, Hetzer R. Cell therapy for heart disease: Great expectations, as yet unmet. Heart Lung Circ 2009; 18(4): 245-56. (Retrieved May 18, 2022)
[http://dx.doi.org/10.1016/j.hlc.2008.10.014] [PMID: 19119076]
[19]
Stem cell facts Available from: https://www.closerlookatstemcells.org/wp-content/uploads/2018/10/stem-cell-facts.pdf (Retrieved May 18, 2022).
[20]
Carresi C, Scicchitano M, Scarano F, et al. The potential properties of natural compounds in cardiac stem cell activation: Their role in myocardial regeneration. Nutrients 2021; 13(1): 275.
[http://dx.doi.org/10.3390/nu13010275]
[21]
Musunuru K, Sheikh F, Gupta RM, et al. Induced pluripotent stem cells for cardiovascular disease modeling and precision medicine: A scientific statement from the American heart association. Circ Genom Precis Med 2018; 11(1): e000043.
[http://dx.doi.org/10.1161/HCG.0000000000000043] [PMID: 29874173]
[22]
Miao Y, Tian L, Martin M, et al. Intrinsic endocardial defects contribute to hypoplastic left heart syndrome. Cell Stem Cell 2020; 27(4): 574-589.e8.
[http://dx.doi.org/10.1016/j.stem.2020.07.015] [PMID: 32810435]
[23]
Jiang Y, Habibollah S, Tilgner K, et al. An induced pluripotent stem cell model of Hypoplastic Left Heart Syndrome (HLHS) reveals multiple expression and functional differences in HLHS-derived cardiac myocytes. Stem Cells Transl Med 2014; 3(4): 416-23.
[http://dx.doi.org/10.5966/sctm.2013-0105] [PMID: 24591732]
[24]
Kobayashi J, Yoshida M, Tarui S, et al. Directed differentiation of patient-specific induced pluripotent stem cells identifies the transcriptional repression and epigenetic modification of NKX2-5, HAND1, and NOTCH1 in hypoplastic left heart syndrome. PLoS One 2014; 9(7): e102796.
[http://dx.doi.org/10.1371/journal.pone.0102796]
[25]
Lam YY, Keung W, Chan CH, et al. Single-cell transcriptomics of engineered cardiac tissues from patient-specific induced pluripotent stem cell-derived cardiomyocytes reveals abnormal developmental trajectory and intrinsic contractile defects in hypoplastic right heart syndrome. J Am Heart Assoc 2020; 9(20): e016528.
[http://dx.doi.org/10.1161/JAHA.120.016528] [PMID: 33059525]
[26]
Tarui S, Ishigami S, Ousaka D, et al. Transcoronary infusion of cardiac progenitor cells in hypoplastic left heart syndrome: Threeyear follow-up of the transcoronary infusion of cardiac progenitor cells in patients with single-ventricle physiology (ticap) trial. J Thorac Cardiovasc Surg 2015; 150(5): 1198-1207, 1208.e1-1208.e2.
[http://dx.doi.org/10.1016/j.jtcvs.2015.06.076] [PMID: 26232942]
[27]
Burkhart HM, Qureshi MY, Rossano JW, et al. Autologous stem cell therapy for hypoplastic left heart syndrome: Safety and feasibility of intraoperative intramyocardial injections. J Thorac Cardiovasc Surg 2019; 158(6): 1614-23.
[http://dx.doi.org/10.1016/j.jtcvs.2019.06.001] [PMID: 31345560]
[28]
Rupp S, Zeiher AM, Dimmeler S, et al. A regenerative strategy for heart failure in hypoplastic left heart syndrome: Intracoronary administration of autologous bone marrow-derived progenitor cells. J Heart Lung Transplant 2010; 29(5): 574-7.
[http://dx.doi.org/10.1016/j.healun.2009.10.006] [PMID: 20044280]
[29]
Kaushal S, Wehman B, Pietris N, et al. Study design and rationale for ELPIS: A phase I/IIb randomized pilot study of allogeneic human mesenchymal stem cell injection in patients with hypoplastic left heart syndrome. Am Heart J 2017; 192: 48-56.
[http://dx.doi.org/10.1016/j.ahj.2017.06.009] [PMID: 28938963]
[30]
Find studies. ClinicalTrials.gov. (n.d.). Available from: https://clinicaltrials.gov/ct2/search/index (Retrieved May 18, 2022).
[31]
Tsilimigras DI, Oikonomou EK, Moris D, Schizas D, Economopoulos KP, Mylonas KS. Stem cell therapy for congenital heart disease: A systematic review. Circulation 2017; 136(24): 2373-85.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.117.029607] [PMID: 29229621]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy