Prospective Medicines against the Widespread, Emergent, and Multidrugresistant Opportunistic Fungal Pathogen Candida auris: A Breath of Hope | Bentham Science
Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Perspective

Prospective Medicines against the Widespread, Emergent, and Multidrugresistant Opportunistic Fungal Pathogen Candida auris: A Breath of Hope

Author(s): Lívia de Souza Ramos, Laura Nunes Silva, Thaís Pereira de Mello, Heloísa Freire Frota, Marta Helena Branquinha and André Luis Souza dos Santos*

Volume 22, Issue 16, 2022

Published on: 24 June, 2022

Page: [1297 - 1305] Pages: 9

DOI: 10.2174/1568026622666220520153748

Open Access Journals Promotions 2
Abstract

The emergence of the pathogen Candida auris is a real concern worldwide, especially due to its multidrug resistance profile, besides the difficulties in establishing the correct identification by conventional laboratory methods and its capacity of causing outbreaks in healthcare settings. The limited arsenal of available antifungal drugs, coupled with the lack of momentum for the development of new reagents, represent a challenge in the management of such a pathogen. In this perspective, we have focused on discussing new, promising treatment options for C. auris infections. These novel drugs include an antifungal agent already approved for medical use in the United States of America, compounds that are already in clinical trials and those with potential for repurposing use against this important fungal pathogen.

Keywords: Candida auris, Candidiasis, Multidrug resistance, Antifungal drugs, Repurposed drugs, Novel compounds.

Next »
Graphical Abstract
[1]
Wu, B.; Hussain, M.; Zhang, W.; Stadler, M.; Liu, X.; Xiang, M. Current insights into fungal species diversity and perspective on naming the environmental DNA sequences of fungi. Mycology, 2019, 10(3), 127-140.
[http://dx.doi.org/10.1080/21501203.2019.1614106] [PMID: 31448147]
[2]
de Mello, T.P.; de Souza Ramos, L.; Braga-Silva, L.A.; Branquinha, M.H.; Santos, A.L.S. Fungal biofilm - a real obstacle against an efficient therapy: Lessons from Candida. Curr. Top. Med. Chem., 2017, 17(17), 1987-2004.
[http://dx.doi.org/10.2174/1568026617666170105145227] [PMID: 28056742]
[3]
Lockhart, S.R.; Guarner, J. Emerging and reemerging fungal infections. Semin. Diagn. Pathol., 2019, 36(3), 177-181.
[http://dx.doi.org/10.1053/j.semdp.2019.04.010] [PMID: 31010605]
[4]
Bongomin, F.; Gago, S.; Oladele, R.O.; Denning, D.W. Global and multi-national prevalence of fungal diseases-estimate precision. J. Fungi (Basel), 2017, 3(4), 57.
[http://dx.doi.org/10.3390/jof3040057] [PMID: 29371573]
[5]
Brown, G.D.; Denning, D.W.; Gow, N.A.R.; Levitz, S.M.; Netea, M.G.; White, T.C. Hidden killers: Human fungal infections. Sci. Transl. Med., 2012, 4(165), 165rv13.
[http://dx.doi.org/10.1126/scitranslmed.3004404] [PMID: 23253612]
[6]
Rodrigues, M.L.; Nosanchuk, J.D. Fungal diseases as neglected pathogens: A wake-up call to public health officials. PLoS Negl. Trop. Dis., 2020, 14(2), e0007964.
[http://dx.doi.org/10.1371/journal.pntd.0007964] [PMID: 32078635]
[7]
Silva, L.N.; de Mello, T.P.; de Souza Ramos, L.; Branquinha, M.H.; Roudbary, M.; Santos, A.L.S. Fungal infections in COVID-19-positive patients: A lack of optimal treatment options. Curr. Top. Med. Chem., 2020, 20(22), 1951-1957.
[http://dx.doi.org/10.2174/156802662022200917110102] [PMID: 33040728]
[8]
Casalini, G.; Giacomelli, A.; Ridolfo, A.; Gervasoni, C.; Antinori, S. Invasive fungal infections complicating COVID-19: A narrative review. J. Fungi (Basel), 2021, 7(11), 921.
[http://dx.doi.org/10.3390/jof7110921] [PMID: 34829210]
[9]
Scorzoni, L. de Paula e Silva, A.C.A.; Marcos, C.M.; Assato, P.A.; de Melo, W.C.M.A.; de Oliveira, H.C.; Costa-Orlandi, C.B.; Mendes-Giannini, M.J.S.; Fusco-Almeida, A.M. Antifungal therapy: New advances in the understanding and treatment of mycosis. Front. Microbiol., 2017, 8, 1-23.
[10]
Wisplinghoff, H.; Bischoff, T.; Tallent, S.M.; Seifert, H.; Wenzel, R.P.; Edmond, M.B. Nosocomial bloodstream infections in US hospitals: Analysis of 24,179 cases from a prospective nationwide surveillance study. Clin. Infect. Dis., 2004, 39(3), 309-317.
[http://dx.doi.org/10.1086/421946] [PMID: 15306996]
[11]
Sardi, J.C.O.; Scorzoni, L.; Bernardi, T.; Fusco-Almeida, A.M.; Mendes Giannini, M.J.S. Candida species: Current epidemiology, pathogenicity, biofilm formation, natural antifungal products and new therapeutic options. J. Med. Microbiol., 2013, 62(Pt 1), 10-24.
[http://dx.doi.org/10.1099/jmm.0.045054-0] [PMID: 23180477]
[12]
Ben-Ami, R.; Berman, J.; Novikov, A.; Bash, E.; Shachor-Meyouhas, Y.; Zakin, S.; Maor, Y.; Tarabia, J.; Schechner, V.; Adler, A.; Finn, T. Multidrug-resistant Candida haemulonii and C. auris, Tel Aviv, Israel. Emerg. Infect. Dis., 2017, 23(1), 195-203.
[PMID: 28098529]
[13]
Černáková, L.; Roudbary, M.; Brás, S.; Tafaj, S.; Rodrigues, C.F. Candida auris: A quick review on identification, current treatments, and challenges. Int. J. Mol. Sci., 2021, 22(9), 4470.
[http://dx.doi.org/10.3390/ijms22094470] [PMID: 33922907]
[14]
Muñoz, J.F.; Gade, L.; Chow, N.A.; Loparev, V.N.; Juieng, P.; Berkow, E.L.; Farrer, R.A.; Litvintseva, A.P.; Cuomo, C.A. Genomic insights into multidrug-resistance, mating and virulence in Candida auris and related emerging species. Nat. Commun., 2018, 9(1), 5346.
[http://dx.doi.org/10.1038/s41467-018-07779-6] [PMID: 30559369]
[15]
Silva, L.N.; de Mello, T.P.; de Souza Ramos, L.; Branquinha, M.H.; Santos, A.L.S. New and promising chemotherapeutics for emerging infections involving drug-resistant non-albicans Candida species. Curr. Top. Med. Chem., 2019, 19(28), 2527-2553.
[http://dx.doi.org/10.2174/1568026619666191025152412] [PMID: 31654512]
[16]
Osei Sekyere, J. Candida auris: A systematic review and meta-analysis of current updates on an emerging multidrug-resistant pathogen. MicrobiologyOpen, 2018, 7(4), e00578.
[http://dx.doi.org/10.1002/mbo3.578] [PMID: 29345117]
[17]
Lockhart, S.R.; Etienne, K.A.; Vallabhaneni, S.; Farooqi, J.; Chowdhary, A.; Govender, N.P.; Colombo, A.L.; Calvo, B.; Cuomo, C.A.; Desjardins, C.A.; Berkow, E.L.; Castanheira, M.; Magobo, R.E.; Jabeen, K.; Asghar, R.J.; Meis, J.F.; Jackson, B.; Chiller, T.; Litvintseva, A.P. Simultaneous emergence of multidrug-resistant Candida auris on 3 continents confirmed by whole-genome sequencing and epidemiological analyses. Clin. Infect. Dis., 2017, 64(2), 134-140.
[http://dx.doi.org/10.1093/cid/ciw691] [PMID: 27988485]
[18]
Revie, N.M.; Iyer, K.R.; Robbins, N.; Cowen, L.E. Antifungal drug resistance: evolution, mechanisms and impact. Curr. Opin. Microbiol., 2018, 45, 70-76.
[http://dx.doi.org/10.1016/j.mib.2018.02.005] [PMID: 29547801]
[19]
Chowdhary, A.; Prakash, A.; Sharma, C.; Kordalewska, M.; Kumar, A.; Sarma, S.; Tarai, B.; Singh, A.; Upadhyaya, G.; Upadhyay, S.; Yadav, P.; Singh, P.K.; Khillan, V.; Sachdeva, N.; Perlin, D.S.; Meis, J.F. A multicentre study of antifungal susceptibility patterns among 350 Candida auris isolates (2009-17) in India: Role of the ERG11 and FKS1 genes in azole and echinocandin resistance. J. Antimicrob. Chemother., 2018, 73(4), 891-899.
[http://dx.doi.org/10.1093/jac/dkx480] [PMID: 29325167]
[20]
Rybak, J.M.; Doorley, L.A.; Nishimoto, A.T.; Barker, K.S.; Palmer, G.E.; Rogers, P.D. Abrogation of triazole resistance upon deletion of CDR1 in a clinical isolate of Candida auris. Antimicrob. Agents Chemother., 2019, 63(4), e00057-e19.
[http://dx.doi.org/10.1128/AAC.00057-19] [PMID: 30718246]
[21]
Silva, L.N.; Ramos, L.S.; Oliveira, S.S.C.; Magalhães, L.B.; Squizani, E.D.; Kmetzsch, L.; Vainstein, M.H.; Branquinha, M.H.; Santos, A.L.S. Insights into the multi-azole resistance profile in Candida haemulonii species complex. J. Fungi (Basel), 2020, 6(4), 215.
[http://dx.doi.org/10.3390/jof6040215] [PMID: 33050545]
[22]
Silva, L.N.; Oliveira, S.S.C.; Magalhães, L.B.; Andrade Neto, V.V.; Torres-Santos, E.C.; Carvalho, M.D.C.; Pereira, M.D.; Branquinha, M.H.; Santos, A.L.S. Unmasking the amphotericin B resistance mechanisms in Candida haemulonii species complex. ACS Infect. Dis., 2020, 6(5), 1273-1282.
[http://dx.doi.org/10.1021/acsinfecdis.0c00117] [PMID: 32239912]
[23]
Carolus, H.; Pierson, S.; Lagrou, K.; Van Dijck, P. Amphotericin B and other polyenes-discovery, clinical use, mode of action and drug resistance. J. Fungi (Basel), 2020, 6(4), 321.
[http://dx.doi.org/10.3390/jof6040321] [PMID: 33261213]
[24]
Sanglard, D.; Ischer, F.; Parkinson, T.; Falconer, D.; Bille, J. Candida albicans mutations in the ergosterol biosynthetic pathway and resistance to several antifungal agents. Antimicrob. Agents Chemother., 2003, 47(8), 2404-2412.
[http://dx.doi.org/10.1128/AAC.47.8.2404-2412.2003] [PMID: 12878497]
[25]
Ahmad, S.; Joseph, L.; Parker, J.E.; Asadzadeh, M.; Kelly, S.L.; Meis, J.F.; Khan, Z. ERG6 and ERG2 are major targets conferring reduced susceptibility to Amphotericin B in clinical Candida glabrata isolates in Kuwait. Antimicrob. Agents Chemother., 2019, 63(2), 1-12.
[http://dx.doi.org/10.1128/AAC.01900-18] [PMID: 30455247]
[26]
Vincent, B.M.; Lancaster, A.K.; Scherz-Shouval, R.; Whitesell, L.; Lindquist, S. Fitness trade-offs restrict the evolution of resistance to amphotericin B. PLoS Biol., 2013, 11(10), e1001692.
[http://dx.doi.org/10.1371/journal.pbio.1001692] [PMID: 24204207]
[27]
Silva, L.N.; de Mello, T.P.; de Souza Ramos, L.; Branquinha, M.H.; Santos, A.L.S. Current challenges and updates on the therapy of fungal infections. Curr. Top. Med. Chem., 2019, 19(7), 495-499.
[http://dx.doi.org/10.2174/156802661907190531093808] [PMID: 31210103]
[28]
Robbins, N.; Caplan, T.; Cowen, L.E. Molecular evolution of antifungal drug resistance. Annu. Rev. Microbiol., 2017, 71(1), 753-775.
[http://dx.doi.org/10.1146/annurev-micro-030117-020345] [PMID: 28886681]
[29]
Arendrup, M.C.; Patterson, T.F. Multidrug-resistant Candida: Epidemiology, molecular mechanisms, and treatment. J. Infect. Dis., 2017, 216(Suppl. 3), S445-S451.
[http://dx.doi.org/10.1093/infdis/jix131] [PMID: 28911043]
[30]
Kordalewska, M.; Lee, A.; Park, S.; Berrio, I.; Chowdhary, A.; Zhao, Y.; Perlin, D.S. Understanding echinocandin resistance in the emerging pathogen Candida auris. Antimicrob. Agents Chemother., 2018, 62(6), 1-9.
[http://dx.doi.org/10.1128/AAC.00238-18] [PMID: 29632013]
[31]
Rhodes, J.; Abdolrasouli, A.; Farrer, R.A.; Cuomo, C.A.; Aanensen, D.M.; Armstrong-James, D.; Fisher, M.C.; Schelenz, S. Genomic epidemiology of the UK outbreak of the emerging human fungal pathogen Candida auris. Emerg. Microbes Infect., 2018, 7(1), 43-43.
[http://dx.doi.org/10.1038/s41426-018-0045-x] [PMID: 29593275]
[32]
Miceli, M.H.; Kauffman, C.A. Isavuconazole: A new broad-spectrum triazole antifungal agent. Clin. Infect. Dis., 2015, 61(10), 1558-1565.
[http://dx.doi.org/10.1093/cid/civ571] [PMID: 26179012]
[33]
Ghannoum, M.; Arendrup, M.C.; Chaturvedi, V.P.; Lockhart, S.R.; McCormick, T.S.; Chaturvedi, S.; Berkow, E.L.; Juneja, D.; Tarai, B.; Azie, N.; Angulo, D.; Walsh, T.J. Ibrexafungerp: A novel oral triterpenoid antifungal in development for the treatment of Candida auris infections. Antibiotics (Basel), 2020, 9(9), 539.
[http://dx.doi.org/10.3390/antibiotics9090539] [PMID: 32854252]
[34]
Larkin, E.; Hager, C.; Chandra, J.; Mukherjee, P.K.; Retuerto, M.; Salem, I.; Long, L.; Isham, N.; Kovanda, L.; Borroto-Esoda, K.; Wring, S.; Angulo, D.; Ghannoum, M. The emerging pathogen Candida auris: Growth phenotype, virulence factors, activity of antifungals, and effect of SCY-078, a novel glucan synthesis inhibitor, on growth morphology and biofilm formation. Antimicrob. Agents Chemother., 2017, 61(5), e02396-e16.
[http://dx.doi.org/10.1128/AAC.02396-16] [PMID: 28223375]
[35]
Arendrup, M.C.; Jørgensen, K.M.; Hare, R.K.; Chowdhary, A. In vitro activity of Ibrexafungerp (SCY-078) against Candida auris isolates as determined by EUCAST methodology and comparison with activity against C. albicans and C. glabrata and with the activities of six comparator agents. Antimicrob. Agents Chemother., 2020, 64(3), e02136-e19.
[http://dx.doi.org/10.1128/AAC.02136-19] [PMID: 31844005]
[36]
Zhu, Y.C.; Barat, S.A.; Borroto-Esoda, K.; Angulo, D.; Chaturvedi, S.; Chaturvedi, V. Pan-resistant Candida auris isolates from the outbreak in New York are susceptible to ibrexafungerp (a glucan synthase inhibitor). Int. J. Antimicrob. Agents, 2020, 55(4), 105922.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105922] [PMID: 32092395]
[37]
Wiederhold, N.P.; Najvar, L.K.; Olivo, M.; Morris, K.N.; Patterson, H.P.; Catano, G.; Patterson, T.F. Ibrexafungerp demonstrates in vitro activity against fluconazole-resistant Candida auris and in vivo efficacy with delayed initiation of therapy in an experimental model of invasive candidiasis. Antimicrob. Agents Chemother., 2021, 65(6), e02694-e20.
[http://dx.doi.org/10.1128/AAC.02694-20] [PMID: 33753333]
[38]
Giacobbe, D.R.; Magnasco, L.; Sepulcri, C.; Mikulska, M.; Koehler, P.; Cornely, O.A.; Bassetti, M. Recent advances and future perspectives in the pharmacological treatment of Candida auris infections. Expert Rev. Clin. Pharmacol., 2021, 14(10), 1205-1220.
[http://dx.doi.org/10.1080/17512433.2021.1949285] [PMID: 34176393]
[39]
Hoenigl, M.; Sprute, R.; Egger, M.; Arastehfar, A.; Cornely, O.A.; Krause, R.; Lass-Flörl, C.; Prattes, J.; Spec, A.; Thompson, G.R., III; Wiederhold, N.; Jenks, J.D. The antifungal pipeline: Fosmanogepix, ibrexafungerp, olorofim, opelconazole, and rezafungin. Drugs, 2021, 81(15), 1703-1729.
[http://dx.doi.org/10.1007/s40265-021-01611-0] [PMID: 34626339]
[40]
Berkow, E.L.; Lockhart, S.R. Activity of CD101, a long-acting echinocandin, against clinical isolates of Candida auris. Diagn. Microbiol. Infect. Dis., 2018, 90(3), 196-197.
[http://dx.doi.org/10.1016/j.diagmicrobio.2017.10.021] [PMID: 29307565]
[41]
Helleberg, M.; Jørgensen, K.M.; Hare, R.K.; Datcu, R.; Chowdhary, A.; Arendrup, M.C. Rezafungin in vitro activity against contemporary Nordic clinical Candida isolates and Candida auris determined by the EUCAST Reference Method. Antimicrob. Agents Chemother., 2020, 64(4), e02438-e19.
[http://dx.doi.org/10.1128/AAC.02438-19] [PMID: 32015032]
[42]
Tóth, Z.; Forgács, L.; Locke, J.B.; Kardos, G.; Nagy, F.; Kovács, R.; Szekely, A.; Borman, A.M.; Majoros, L. In vitro activity of rezafungin against common and rare Candida species and Saccharomyces cerevisiae. J. Antimicrob. Chemother., 2019, 74(12), 3505-3510.
[http://dx.doi.org/10.1093/jac/dkz390] [PMID: 31539426]
[43]
Hager, C.L.; Larkin, E.L.; Long, L.A.; Ghannoum, M.A. Evaluation of the efficacy of rezafungin, a novel echinocandin, in the treatment of disseminated Candida auris infection using an immunocompromised mouse model. J. Antimicrob. Chemother., 2018, 73(8), 2085-2088.
[http://dx.doi.org/10.1093/jac/dky153] [PMID: 29897469]
[44]
Zhu, Y.; Kilburn, S.; Kapoor, M.; Chaturvedi, S.; Shaw, K.J.; Chaturvedi, V. In vitro activity of Manogepix against multidrug-resistant and panresistant Candida auris from the New York outbreak. Antimicrob. Agents Chemother., 2020, 64(11), e01124-e20.
[http://dx.doi.org/10.1128/AAC.01124-20] [PMID: 32839219]
[45]
Arendrup, M.C.; Chowdhary, A.; Astvad, K.M.T.; Jørgensen, K.M. APX001A in vitro activity against contemporary blood isolates and Candida auris determined by the EUCAST reference method. Antimicrob. Agents Chemother., 2018, 62(10), e01225-e18.
[http://dx.doi.org/10.1128/AAC.01225-18] [PMID: 30104264]
[46]
Arendrup, M.C.; Chowdhary, A.; Jørgensen, K.M.; Meletiadis, J. Manogepix (APX001A) in vitro activity against Candida auris: Head-to-head comparison of EUCAST and CLSI MICs. Antimicrob. Agents Chemother., 2020, 64(10), e00656-e20.
[http://dx.doi.org/10.1128/AAC.00656-20] [PMID: 32660998]
[47]
Berkow, E.L.; Lockhart, S.R. Activity of novel antifungal compound APX001A against a large collection of Candida auris. J. Antimicrob. Chemother., 2018, 73(11), 3060-3062.
[http://dx.doi.org/10.1093/jac/dky302] [PMID: 30085167]
[48]
Hager, C.L.; Larkin, E.L.; Long, L.; Zohra Abidi, F.; Shaw, K.J.; Ghannoum, M.A. In vitro and in vivo evaluation of the antifungal activity of APX001A/APX001 against Candida auris. Antimicrob. Agents Chemother., 2018, 62(3), e02319-e17.
[http://dx.doi.org/10.1128/AAC.02319-17] [PMID: 29311065]
[49]
Wiederhold, N.P.; Najvar, L.K.; Shaw, K.J.; Jaramillo, R.; Patterson, H.; Olivo, M.; Catano, G.; Patterson, T.F. Efficacy of delayed therapy with Fosmanogepix (APX001) in a murine model of Candida auris invasive candidiasis. Antimicrob. Agents Chemother., 2019, 63(11), e01120-e19.
[http://dx.doi.org/10.1128/AAC.01120-19] [PMID: 31427304]
[50]
Wall, G.; Chen, E.; Hull, M.V.; Lopez-Ribot, J.L. Screening the CALIBR ReFRAME Library in search for inhibitors of Candida auris biofilm formation. Front. Cell. Infect. Microbiol., 2020, 10, 597931.
[http://dx.doi.org/10.3389/fcimb.2020.597931] [PMID: 33324579]
[51]
Ghofrani, H.A.; Osterloh, I.H.; Grimminger, F. Sildenafil: From angina to erectile dysfunction to pulmonary hypertension and beyond. Nat. Rev. Drug Discov., 2006, 5(8), 689-702.
[http://dx.doi.org/10.1038/nrd2030] [PMID: 16883306]
[52]
Nosengo, N. Can you teach old drugs new tricks? Nature, 2016, 534(7607), 314-316.
[http://dx.doi.org/10.1038/534314a] [PMID: 27306171]
[53]
Ashburn, T.T.; Thor, K.B. Drug repositioning: Identifying and developing new uses for existing drugs. Nat. Rev. Drug Discov., 2004, 3(8), 673-683.
[http://dx.doi.org/10.1038/nrd1468] [PMID: 15286734]
[54]
Bustamante, C.; Ochoa, R.; Asela, C.; Muskus, C. Repurposing of known drugs for leishmaniasis treatment using bioinformatic predictions, in vitro validations and pharmacokinetic simulations. J. Comput. Aided Mol. Des., 2019, 33(9), 845-854.
[http://dx.doi.org/10.1007/s10822-019-00230-y] [PMID: 31612362]
[55]
Barreto, T.L.; Rossato, L.; de Freitas, A.L.D.; Meis, J.F.; Lopes, L.B.; Colombo, A.L.; Ishida, K. Miltefosine as an alternative strategy in the treatment of the emerging fungus Candida auris. Int. J. Antimicrob. Agents, 2020, 56(2), 106049.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.106049] [PMID: 32544569]
[56]
Wu, Y.; Totten, M.; Memon, W.; Ying, C.; Zhang, S.X. In vitro antifungal susceptibility of the emerging multidrug-reistant pathogen Candida auris to miltefosine alone and in combination with amphotericin B. Antimicrob. Agents Chemother., 2020, 64(2), e02063-e19.
[http://dx.doi.org/10.1128/AAC.02063-19]
[57]
Imbert, S.; Palous, M.; Meyer, I.; Dannaoui, E.; Mazier, D.; Datry, A.; Fekkar, A. In vitro combination of voriconazole and miltefosine against clinically relevant molds. Antimicrob. Agents Chemother., 2014, 58(11), 6996-6998.
[http://dx.doi.org/10.1128/AAC.03212-14] [PMID: 25199776]
[58]
Compain, F.; Botterel, F.; Sitterlé, E.; Paugam, A.; Bougnoux, M.E.; Dannaoui, E. In vitro activity of miltefosine in combination with voriconazole or amphotericin B against clinical isolates of Scedosporium spp. J. Med. Microbiol., 2015, 64(Pt 3), 309-311.
[http://dx.doi.org/10.1099/jmm.0.000019] [PMID: 25596124]
[59]
Zhou, J.; Li, J.; Cheong, I.; Liu, N.N.; Wang, H. Evaluation of artemisinin derivative artemether as a fluconazole potentiator through inhibition of Pdr5. Bioorg. Med. Chem., 2021, 44, 116293.
[http://dx.doi.org/10.1016/j.bmc.2021.116293] [PMID: 34243044]
[60]
Cheng, Y.S.; Roma, J.S.; Shen, M.; Mota Fernandes, C.; Tsang, P.S.; Forbes, H.E.; Boshoff, H.; Lazzarini, C.; Del Poeta, M.; Zheng, W.; Williamson, P.R. Identification of antifungal compounds against multidrug-resistant Candida auris utilizing a High-Throughput Drug-Repurposing Screen. Antimicrob. Agents Chemother., 2021, 65(4), e01305-e01320.
[http://dx.doi.org/10.1128/AAC.01305-20] [PMID: 33468482]
[61]
Gowri, M.; Jayashree, B.; Jeyakanthan, J.; Girija, E.K. Sertraline as a promising antifungal agent: Inhibition of growth and biofilm of Candida auris with special focus on the mechanism of action in vitro. J. Appl. Microbiol., 2020, 128(2), 426-437.
[http://dx.doi.org/10.1111/jam.14490] [PMID: 31621139]
[62]
Eldesouky, H.E.; Lanman, N.A.; Hazbun, T.R.; Seleem, M.N. Aprepitant, an antiemetic agent, interferes with metal ion homeostasis of Candida auris and displays potent synergistic interactions with azole drugs. Virulence, 2020, 11(1), 1466-1481.
[http://dx.doi.org/10.1080/21505594.2020.1838741] [PMID: 33100149]

© 2024 Bentham Science Publishers | Privacy Policy