A Reverse Structure-based Design of HPV E7 Inhibitor | Bentham Science
Generic placeholder image

Current Computer-Aided Drug Design

Editor-in-Chief

ISSN (Print): 1573-4099
ISSN (Online): 1875-6697

Research Article

A Reverse Structure-based Design of HPV E7 Inhibitor

Author(s): Wan Chein Tan, Shatrah Othman*, See Khai Lim, Nurshamimi Nor Rashid and Choon Han Heh

Volume 18, Issue 4, 2022

Published on: 20 August, 2022

Page: [318 - 325] Pages: 8

DOI: 10.2174/1573409918666220509214449

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Human papillomavirus (HPV) is a small, non-enveloped double-stranded circular DNA virus. The high-risk types of HPV are claimed to be responsible for over 99% of cervical cancers. One of the essential HPV oncoproteins, E7, is responsible for escaping from G1/S cell cycle arrest in HPV-infected cells by binding to the retinoblastoma protein (pRb) through its LXCXE binding site.

Objective: To design a peptide inhibitor targeting HPV E7 through an in silico approach.

Methods: In this study, the LXCXE binding domain of pRb is used as a target to design peptide inhibitors using a reverse structure-based approach. The designed amino acid sequence from the B pocket of pRb, named peptide Y, was further investigated in vitro analysis. The cytotoxicity of the peptide was analysed in two cell lines, namely, CaSki, containing an integrated HPV16 genome, and HaCaT, an immortalized keratinocyte cell. Cell cycle analysis was also carried out in both cell lines treated with peptides.

Results: In the in silico approach, a 9-amino acids peptide sequence formed 4 conventional hydrogen bonds with LXCXE motif was selected for in vitro assay. Based on the cytotoxicity analysis, the peptide showed low toxicity in both cell lines, where the cell viability remained over 74% when treated with peptide Y. The peptide also caused an accumulation of cells in G0/G1 (+5.4%) and S phase (+10.2%) and a reduction of cells in the G2/M phase (-14.9%) in the CaSki cells with no significant effect on normal cells, indicating it is a potential HPV inhibitor.

Conclusion: A peptide inhibitor, peptide Y, that was designed from the LXCXE binding motif in pRb can inhibit HPV E7 by causing a cell accumulation effect in G0/G1, and S phases of the cell cycle in the HPV transformed cell lines. These findings could contribute to HPV E7 peptide inhibitor in the future.

Keywords: Human Papillomavirus E7, pRb, peptide inhibitor, LXCXE, cell cycle, in silico.

« Previous
Graphical Abstract
[1]
Knipe, D.M.; Howley, P.M. Fields Virology; Lippincott Williams & Wilkins: Philadelphia, 2007.
[2]
Cohen, P.A.; Jhingran, A.; Oaknin, A.; Denny, L. Cervical cancer. Lancet, 2019, 393(10167), 169-182.
[http://dx.doi.org/10.1016/S0140-6736(18)32470-X] [PMID: 30638582]
[3]
Cutts, F.T.; Franceschi, S.; Goldie, S.; Castellsague, X.; de Sanjose, S.; Garnett, G.; Edmunds, W.J.; Claeys, P.; Goldenthal, K.L.; Harper, D.M.; Markowitz, L. Human papillomavirus and HPV vaccines: A review. Bull. World Health Organ., 2007, 85(9), 719-726.
[http://dx.doi.org/10.2471/BLT.06.038414] [PMID: 18026629]
[4]
Šarenac, T.; Mikov, M. Cervical cancer, different treatments and importance of bile acids as therapeutic agents in this disease. Front. Pharmacol., 2019, 10, 484.
[http://dx.doi.org/10.3389/fphar.2019.00484] [PMID: 31214018]
[5]
Vora, C.; Gupta, S. Targeted therapy in cervical cancer. ESMO Open, 2019, 3(Suppl. 1), e000462.
[http://dx.doi.org/10.1136/esmoopen-2018-000462] [PMID: 30997156]
[6]
Tomaić, V. Functional roles of E6 and E7 Oncoproteins in HPV-induced malignancies at diverse anatomical sites. Cancers (Basel), 2016, 8(10), E95.
[http://dx.doi.org/10.3390/cancers8100095] [PMID: 27775564]
[7]
McLaughlin-Drubin, M.E.; Münger, K. The human papillomavirus E7 oncoprotein. Virology, 2009, 384(2), 335-344.
[http://dx.doi.org/10.1016/j.virol.2008.10.006] [PMID: 19007963]
[8]
Dick, F.A. Structure-function analysis of the retinoblastoma tumor suppressor protein - is the whole a sum of its parts? Cell Div., 2007, 2, 26.
[http://dx.doi.org/10.1186/1747-1028-2-26] [PMID: 17854503]
[9]
Henley, S.A.; Dick, F.A. The retinoblastoma family of proteins and their regulatory functions in the mammalian cell division cycle. Cell Div., 2012, 7(1), 10.
[http://dx.doi.org/10.1186/1747-1028-7-10] [PMID: 22417103]
[10]
Zhang, H.S.; Dean, D.C. Rb-mediated chromatin structure regulation and transcriptional repression. Oncogene, 2001, 20(24), 3134-3138.
[http://dx.doi.org/10.1038/sj.onc.1204338] [PMID: 11420730]
[11]
Helt, A.M.; Galloway, D.A. Destabilization of the retinoblastoma tumor suppressor by human papillomavirus type 16 E7 is not sufficient to overcome cell cycle arrest in human keratinocytes. J. Virol., 2001, 75(15), 6737-6747.
[http://dx.doi.org/10.1128/JVI.75.15.6737-6747.2001] [PMID: 11435552]
[12]
Yim, E.K.; Park, J.S. The role of HPV E6 and E7 oncoproteins in HPV-associated cervical carcinogenesis. Cancer Res. Treat., 2005, 37(6), 319-324.
[http://dx.doi.org/10.4143/crt.2005.37.6.319] [PMID: 19956366]
[13]
Fosgerau, K.; Hoffmann, T. Peptide therapeutics: Current status and future directions. Drug Discov. Today, 2015, 20(1), 122-128.
[http://dx.doi.org/10.1016/j.drudis.2014.10.003] [PMID: 25450771]
[14]
Craik, D.J.; Fairlie, D.P.; Liras, S.; Price, D. The future of peptide-based drugs. Chem. Biol. Drug Des., 2013, 81(1), 136-147.
[http://dx.doi.org/10.1111/cbdd.12055] [PMID: 23253135]
[15]
Sorolla, A.; Wang, E.; Golden, E.; Duffy, C.; Henriques, S.T.; Redfern, A.D.; Blancafort, P. Precision medicine by designer interference pep-tides: Applications in oncology and molecular therapeutics. Oncogene, 2020, 39(6), 1167-1184.
[http://dx.doi.org/10.1038/s41388-019-1056-3] [PMID: 31636382]
[16]
Recio, C.; Maione, F.; Iqbal, A.J.; Mascolo, N.; De Feo, V. The potential therapeutic application of peptides and peptidomimetics in cardio-vascular disease. Front. Pharmacol., 2017, 7, 526.
[http://dx.doi.org/10.3389/fphar.2016.00526] [PMID: 28111551]
[17]
Buckley, S.T.; Hubálek, F.; Rahbek, U.L. Chemically modified peptides and proteins - critical considerations for oral delivery. Tissue Barriers, 2016, 4(2), e1156805.
[http://dx.doi.org/10.1080/21688370.2016.1156805] [PMID: 27358754]
[18]
Cushman, D.W.; Cheung, H.S.; Sabo, E.F.; Ondetti, M.A. Design of new antihypertensive drugs: Potent and specific inhibitors of angiotensin-converting enzyme. Prog. Cardiovasc. Dis., 1978, 21(3), 176-182.
[http://dx.doi.org/10.1016/0033-0620(78)90023-3] [PMID: 214817]
[19]
Farhadi, T.; Hashemian, S.M. Computer-aided design of amino acid-based therapeutics: A review. Drug Des. Devel. Ther., 2018, 12, 1239-1254.
[http://dx.doi.org/10.2147/DDDT.S159767] [PMID: 29795978]
[20]
Dominguez, C.; Boelens, R.; Bonvin, A.M. HADDOCK: A protein-protein docking approach based on biochemical or biophysical infor-mation. J. Am. Chem. Soc., 2003, 125(7), 1731-1737.
[http://dx.doi.org/10.1021/ja026939x] [PMID: 12580598]
[21]
Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The protein data bank. Nucleic Acids Res., 2000, 28(1), 235-242.
[http://dx.doi.org/10.1093/nar/28.1.235] [PMID: 10592235]
[22]
Lee, J.O.; Russo, A.A.; Pavletich, N.P. Structure of the retinoblastoma tumour-suppressor pocket domain bound to a peptide from HPV E7. Nature, 1998, 391(6670), 859-865.
[http://dx.doi.org/10.1038/36038] [PMID: 9495340]
[23]
Biovia, D.S. Discovery Studio Modeling Environment, Release 4.5; Dassault Systemes: San Diego, 2015.
[24]
van Zundert, G.C.P.; Rodrigues, J.P.G.L.M.; Trellet, M.; Schmitz, C.; Kastritis, P.L.; Karaca, E.; Melquiond, A.S.J.; van Dijk, M.; de Vries, S.J.; Bonvin, A.M.J.J. The HADDOCK2.2 web server: user-friendly integrative modeling of biomolecular complexes. J. Mol. Biol., 2016, 428(4), 720-725.
[http://dx.doi.org/10.1016/j.jmb.2015.09.014] [PMID: 26410586]
[25]
Boukamp, P.; Petrussevska, R.T.; Breitkreutz, D.; Hornung, J.; Markham, A.; Fusenig, N.E. Normal keratinization in a spontaneously immor-talized aneuploid human keratinocyte cell line. J. Cell Biol., 1988, 106(3), 761-771.
[http://dx.doi.org/10.1083/jcb.106.3.761] [PMID: 2450098]
[26]
Pattillo, R.A.; Hussa, R.O.; Story, M.T.; Ruckert, A.C.; Shalaby, M.R.; Mattingly, R.F. Tumor antigen and human chorionic gonadotropin in CaSki cells: A new epidermoid cervical cancer cell line. Science, 1977, 196(4297), 1456-1458.
[http://dx.doi.org/10.1126/science.867042] [PMID: 867042]
[27]
Cory, A.H.; Owen, T.C.; Barltrop, J.A.; Cory, J.G. Use of an aqueous soluble tetrazolium/formazan assay for cell growth assays in culture. Cancer Commun., 1991, 3(7), 207-212.
[http://dx.doi.org/10.3727/095535491820873191] [PMID: 1867954]
[28]
Zhang, P.; Moreno, R.; Lambert, P.F.; DiMaio, D. Cell-penetrating peptide inhibits retromer-mediated human papillomavirus trafficking dur-ing virus entry. Proc. Natl. Acad. Sci. USA, 2020, 117(11), 6121-6128.
[http://dx.doi.org/10.1073/pnas.1917748117] [PMID: 32123072]
[29]
Ehrenstein, G.; Lecar, H. Electrically gated ionic channels in lipid bilayers. Q. Rev. Biophys., 1977, 10(1), 1-34.
[http://dx.doi.org/10.1017/S0033583500000123] [PMID: 327501]
[30]
Hilchie, A.L.; Vale, R.; Zemlak, T.S.; Hoskin, D.W. Generation of a hematologic malignancy-selective membranolytic peptide from the anti-microbial core (RRWQWR) of bovine lactoferricin. Exp. Mol. Pathol., 2013, 95(2), 192-198.
[http://dx.doi.org/10.1016/j.yexmp.2013.07.006] [PMID: 23892223]
[31]
Yi, Z.F.; Cho, S.G.; Zhao, H.; Wu, Y.Y.; Luo, J.; Li, D.; Yi, T.; Xu, X.; Wu, Z.; Liu, M. A novel peptide from human apolipoprotein(a) inhib-its angiogenesis and tumor growth by targeting c-Src phosphorylation in VEGF-induced human umbilical endothelial cells. Int. J. Cancer, 2009, 124(4), 843-852.
[http://dx.doi.org/10.1002/ijc.24027] [PMID: 19035465]
[32]
Zhang, Y.; Nicolau, A.; Lima, C.F.; Rodrigues, L.R. Bovine lactoferrin induces cell cycle arrest and inhibits mTOR signaling in breast cancer cells. Nutr. Cancer, 2014, 66(8), 1371-1385.
[http://dx.doi.org/10.1080/01635581.2014.956260] [PMID: 25356800]
[33]
Ault, K.A.; Future, I.I.S.G. Effect of prophylactic human papillomavirus L1 virus-like-particle vaccine on risk of cervical intraepithelial neo-plasia grade 2, grade 3, and adenocarcinoma in situ: A combined analysis of four randomised clinical trials. Lancet, 2007, 369(9576), 1861-1868.
[http://dx.doi.org/10.1016/S0140-6736(07)60852-6] [PMID: 17544766]
[34]
Pandhi, D.; Sonthalia, S. Human papilloma virus vaccines: Current scenario. Indian J. Sex. Transm. Dis. AIDS, 2011, 32(2), 75-85.
[http://dx.doi.org/10.4103/0253-7184.85409] [PMID: 22021967]
[35]
Wain, G. The human papillomavirus (HPV) vaccine, HPV related diseases and cervical cancer in the post-reproductive years. Maturitas, 2010, 65(3), 205-209.
[http://dx.doi.org/10.1016/j.maturitas.2009.12.002] [PMID: 20036786]
[36]
Kaliamurthi, S.; Selvaraj, G.; Kaushik, A.C.; Gu, K.R.; Wei, D.Q. Designing of CD8+ and CD8+-overlapped CD4+ epitope vaccine by targeting late and early proteins of human papillomavirus. Biologics, 2018, 12, 107-125.
[PMID: 30323556]
[37]
Giarrè, M.; Caldeira, S.; Malanchi, I.; Ciccolini, F.; Leão, M.J.; Tommasino, M. Induction of pRb degradation by the human papillomavirus type 16 E7 protein is essential to efficiently overcome p16INK4a-imposed G1 cell cycle Arrest. J. Virol., 2001, 75(10), 4705-4712.
[http://dx.doi.org/10.1128/JVI.75.10.4705-4712.2001] [PMID: 11312342]
[38]
Zhao, W.; Liu, Y.; Zhang, L.; Ding, L.; Li, Y.; Zhang, H.; Wang, T.; Hao, M. MicroRNA-154-5p regulates the HPV16 E7-pRb pathway in cervical carcinogenesis by targeting CUL2. J. Cancer, 2020, 11(18), 5379-5389.
[http://dx.doi.org/10.7150/jca.45871] [PMID: 32742484]
[39]
Afriza, D.; Suriyah, W.H.; Ichwan, S.J.A. In silico analysis of molecular interactions between the anti-apoptotic protein surviving and den-tatin, nordentatin, and quercetin. J. Phys. Conf. Ser., 2018, 1073, 032001.
[http://dx.doi.org/10.1088/1742-6596/1073/3/032001]
[40]
Dick, F.A.; Dyson, N.J. Three regions of the pRB pocket domain affect its inactivation by human papillomavirus E7 proteins. J. Virol., 2002, 76(12), 6224-6234.
[http://dx.doi.org/10.1128/JVI.76.12.6224-6234.2002] [PMID: 12021356]
[41]
Gonzalez, S.L.; Stremlau, M.; He, X.; Basile, J.R.; Münger, K. Degradation of the retinoblastoma tumor suppressor by the human papilloma-virus type 16 E7 oncoprotein is important for functional inactivation and is separable from proteasomal degradation of E7. J. Virol., 2001, 75(16), 7583-7591.
[http://dx.doi.org/10.1128/JVI.75.16.7583-7591.2001] [PMID: 11462030]
[42]
Hajighasemi, F.; Tajik, S. Assessment of cytotoxicity of dimethyl sulfoxide in human hematopoietic tumor cell lines. Iran. J. Blood Cancer, 2017, 9(2), 48-53.
[43]
Huh, K.; Zhou, X.; Hayakawa, H.; Cho, J.Y.; Libermann, T.A.; Jin, J.; Harper, J.W.; Munger, K. Human papillomavirus type 16 E7 oncopro-tein associates with the cullin 2 ubiquitin ligase complex, which contributes to degradation of the retinoblastoma tumor suppressor. J. Virol., 2007, 81(18), 9737-9747.
[http://dx.doi.org/10.1128/JVI.00881-07] [PMID: 17609271]
[44]
Banks, L.; Edmonds, C.; Vousden, K.H. Ability of the HPV16 E7 protein to bind RB and induce DNA synthesis is not sufficient for efficient transforming activity in NIH3T3 cells. Oncogene, 1990, 5(9), 1383-1389.
[PMID: 2216461]
[45]
Dahiya, A.; Gavin, M.R.; Luo, R.X.; Dean, D.C. Role of the LXCXE binding site in Rb function. Mol. Cell. Biol., 2000, 20(18), 6799-6805.
[http://dx.doi.org/10.1128/MCB.20.18.6799-6805.2000] [PMID: 10958676]
[46]
Bertoli, C.; Skotheim, J.M.; de Bruin, R.A. Control of cell cycle transcription during G1 and S phases. Nat. Rev. Mol. Cell Biol., 2013, 14(8), 518-528.
[http://dx.doi.org/10.1038/nrm3629] [PMID: 23877564]
[47]
Tan, W.C.; Lim, S.K.; Heh, C.H.; Rashid, N.N.; Othman, S. A reverse structure-based design of HPV E7 inhibitor., Available form: https://github.com/hpvE7/peptideinhibitor

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy