Elevated Urinary Tissue Inhibitor of Metalloproteinase-2 and Insulin-Like Growth Factor Binding Protein-7 Predict Drug-Induced Acute Kidney Injury | Bentham Science
Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Research Article

Elevated Urinary Tissue Inhibitor of Metalloproteinase-2 and Insulin-Like Growth Factor Binding Protein-7 Predict Drug-Induced Acute Kidney Injury

Author(s): K Akalya, Tanusya Murali Murali, Anantharaman Vathsala, Boon-Wee Teo, Sanmay Low, Dharmini Dharmasegaran, Liang-Piu Koh, Glenn Kunnath Bonney, Wei-Zhen Hong, Yi Da and Horng-Ruey Chua*

Volume 23, Issue 3, 2022

Published on: 25 May, 2022

Page: [223 - 232] Pages: 10

DOI: 10.2174/1389200223666220425111931

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Urinary tissue inhibitor of metalloproteinase-2 (TIMP2) and insulin-like growth factor binding protein-7 (IGFBP7) predict severe acute kidney injury (AKI) in critical illness. Earlier but subtle elevation of either biomarker from nephrotoxicity may predict drug-induced AKI.

Methods: A prospective study involving serial urine collection in patients treated with vancomycin, aminoglycosides, amphotericin, foscarnet, or calcineurin inhibitors was performed. Urinary TIMP2 and IGFBP7, both absolute levels and those normalized with urine creatinine, were examined in days leading to AKI onset by KDIGO criteria in cases or at final day of nephrotoxic therapy in non-AKI controls, who were matched for age, baseline kidney function, and nephrotoxic exposure.

Results: Urinary biomarker analyses were performed in 21 AKI patients and 28 non-AKI matched-controls; both groups had comparable baseline kidney function and duration of nephrotoxic drug therapy. Significantly higher absolute, normalized, and composite levels of TIMP2 and IGFBP7 were observed in AKI cases versus controls as early as 2-3 days before AKI onset (all P<0.05); >70% of patients with corresponding levels above 75th percentile developed AKI. Normalized TIMP2 at 2-3 days pre-AKI predicted AKI with the highest average AUROC of 0.81, followed by that of composite [TIMP2]x[IGFBP7] (0.78) after cross-validation. [TIMP2]x[IGFBP7] >0.01 (ng/mL)2/1000 predicted AKI with a sensitivity of 79% and specificity of 60%.

Conclusion: Elevated urinary TIMP2 or IGFBP7 predicts drug-induced AKI with a lead-time of 2-3 days; an opportune time for interventions to reduce nephrotoxicity.

Keywords: Acute kidney injury, antimicrobials, biomarkers, calcineurin inhibitors, drug-related side effects and adverse reactions, Insulinlike growth factor binding proteins, nephrotoxicity, tissue inhibitor of metalloproteinase-2, urinalysis, vancomycin.

Graphical Abstract
[1]
Low, S.; Vathsala, A.; Murali, T.M.; Pang, L.; MacLaren, G.; Ng, W.Y.; Haroon, S.; Mukhopadhyay, A.; Lim, S.L.; Tan, B.H.; Lau, T.; Chua, H.R. Electronic health records accurately predict renal replacement therapy in acute kidney injury. BMC Nephrol., 2019, 20(1), 32.
[http://dx.doi.org/10.1186/s12882-019-1206-4] [PMID: 30704418]
[2]
Coca, S.G.; Yusuf, B.; Shlipak, M.G.; Garg, A.X.; Parikh, C.R. Long-term risk of mortality and other adverse outcomes after acute kidney injury: A systematic review and meta-analysis. Am. J. Kidney Dis., 2009, 53(6), 961-973.
[http://dx.doi.org/10.1053/j.ajkd.2008.11.034] [PMID: 19346042]
[3]
Chua, H.R.; Wong, W.K.; Ong, V.H.; Agrawal, D.; Vathsala, A.; Tay, H.M.; Mukhopadhyay, A. Extended mortality and chronic kidney dis-ease after septic acute kidney injury. J. Intensive Care Med., 2020, 35(6), 527-535.
[http://dx.doi.org/10.1177/0885066618764617] [PMID: 29552953]
[4]
Nash, K.; Hafeez, A.; Hou, S. Hospital-acquired renal insufficiency. Am. J. Kidney Dis., 2002, 39(5), 930-936.
[http://dx.doi.org/10.1053/ajkd.2002.32766] [PMID: 11979336]
[5]
Elyasi, S.; Khalili, H.; Dashti-Khavidaki, S.; Mohammadpour, A. Vancomycin-induced nephrotoxicity: Mechanism, incidence, risk factors and special populations. A literature review. Eur. J. Clin. Pharmacol., 2012, 68(9), 1243-1255.
[http://dx.doi.org/10.1007/s00228-012-1259-9] [PMID: 22411630]
[6]
Zappitelli, M.; Selewski, D.T.; Askenazi, D.J. Nephrotoxic medication exposure and acute kidney injury in neonates. Neoreviews, 2012, 13(7), e420-e427.
[http://dx.doi.org/10.1542/neo.13-7-e420]
[7]
Williams, P.D.; Bennett, D.B.; Gleason, C.R.; Hottendorf, G.H. Correlation between renal membrane binding and nephrotoxicity of aminogly-cosides. Antimicrob. Agents Chemother., 1987, 31(4), 570-574.
[http://dx.doi.org/10.1128/AAC.31.4.570] [PMID: 3606061]
[8]
Ramírez, E.; Jiménez, C.; Borobia, A.M.; Tong, H.Y.; Medrano, N.; Krauel-Bidwell, L.; Carcas, A.J.; Selgas, R.; Frías, J. Vancomycin-induced acute kidney injury detected by a prospective pharmacovigilance program from laboratory signals. Ther. Drug Monit., 2013, 35(3), 360-366.
[http://dx.doi.org/10.1097/FTD.0b013e318286eb86] [PMID: 23666575]
[9]
Trejtnar, F.; Mandíková, J. Kočíncová, J.; Volková, M. Renal handling of amphotericin B and amphotericin B-deoxycholate and potential renal drug-drug interactions with selected antivirals. Antimicrob. Agents Chemother., 2014, 58(10), 5650-5657.
[http://dx.doi.org/10.1128/AAC.02829-14] [PMID: 24957831]
[10]
Gijsen, V.M.; Madadi, P.; Dube, M.P.; Hesselink, D.A.; Koren, G.; de Wildt, S.N. Tacrolimus-induced nephrotoxicity and genetic variability: A review. Ann. Transplant., 2012, 17(2), 111-121.
[http://dx.doi.org/10.12659/AOT.883229] [PMID: 22743729]
[11]
Busauschina, A.; Schnuelle, P.; van der Woude, F.J. Cyclosporine nephrotoxicity. Transplant. Proc., 2004, 36(2)(Suppl.), 229S-233S.
[http://dx.doi.org/10.1016/j.transproceed.2004.01.021] [PMID: 15041343]
[12]
Allegranzi, B.; Bagheri Nejad, S.; Combescure, C.; Graafmans, W.; Attar, H.; Donaldson, L.; Pittet, D. Burden of endemic health-care-associated infection in developing countries: Systematic review and meta-analysis. Lancet, 2011, 377(9761), 228-241.
[http://dx.doi.org/10.1016/S0140-6736(10)61458-4] [PMID: 21146207]
[13]
Shoham, S.; Dominguez, E.A.; Dominguez, E.A. Emerging fungal infections in solid organ transplant recipients: Guidelines of the American society of transplantation infectious diseases community of practice. Clin. Transplant., 2019, 33(9)e13525
[http://dx.doi.org/10.1111/ctr.13525] [PMID: 30859651]
[14]
Abecassis, M.; Bridges, N.D.; Clancy, C.J.; Dew, M.A.; Eldadah, B.; Englesbe, M.J.; Flessner, M.F.; Frank, J.C.; Friedewald, J.; Gill, J.; Gries, C.; Halter, J.B.; Hartmann, E.L.; Hazzard, W.R.; Horne, F.M.; Hosenpud, J.; Jacobson, P.; Kasiske, B.L.; Lake, J.; Loomba, R.; Malani, P.N.; Moore, T.M.; Murray, A.; Nguyen, M.H.; Powe, N.R.; Reese, P.P.; Reynolds, H.; Samaniego, M.D.; Schmader, K.E.; Segev, D.L.; Shah, A.S.; Singer, L.G.; Sosa, J.A.; Stewart, Z.A.; Tan, J.C.; Williams, W.W.; Zaas, D.W.; High, K.P. Solid-organ transplantation in older adults: Current status and future research. Am. J. Transplant., 2012, 12(10), 2608-2622.
[http://dx.doi.org/10.1111/j.1600-6143.2012.04245.x] [PMID: 22958872]
[15]
Gluhovschi, G.; Gadalean, F.; Gluhovschi, C.; Velciov, S.; Petrica, L.; Bob, F.; Bozdog, G.; Kaycsa, A. Urinary biomarkers in assessing the nephrotoxic potential of gentamicin in solitary kidney patients after 7 days of therapy. Ren. Fail., 2014, 36(4), 534-540.
[http://dx.doi.org/10.3109/0886022X.2013.876349] [PMID: 24456153]
[16]
Gluhovschi, G.; Gadalean, F.; Gluhovschi, C.; Velciov, S.; Petrica, L.; Bob, F.; Bozdog, G.; Kaycsa, A. Is ciprofloxacin safe in patients with solitary kidney and upper urinary tract infection? Biomed. Pharmacother., 2016, 84, 366-372.
[http://dx.doi.org/10.1016/j.biopha.2016.09.052] [PMID: 27668536]
[17]
Yang, Q.H.; Liu, D.W.; Long, Y.; Liu, H.Z.; Chai, W.Z.; Wang, X.T. Acute renal failure during sepsis: Potential role of cell cycle regulation. J. Infect., 2009, 58(6), 459-464.
[http://dx.doi.org/10.1016/j.jinf.2009.04.003] [PMID: 19428114]
[18]
Kashani, K.; Al-Khafaji, A.; Ardiles, T.; Artigas, A.; Bagshaw, S.M.; Bell, M.; Bihorac, A.; Birkhahn, R.; Cely, C.M.; Chawla, L.S.; Davison, D.L.; Feldkamp, T.; Forni, L.G.; Gong, M.N.; Gunnerson, K.J.; Haase, M.; Hackett, J.; Honore, P.M.; Hoste, E.A.; Joannes-Boyau, O.; Joan-nidis, M.; Kim, P.; Koyner, J.L.; Laskowitz, D.T.; Lissauer, M.E.; Marx, G.; McCullough, P.A.; Mullaney, S.; Ostermann, M.; Rimmelé, T.; Shapiro, N.I.; Shaw, A.D.; Shi, J.; Sprague, A.M.; Vincent, J.L.; Vinsonneau, C.; Wagner, L.; Walker, M.G.; Wilkerson, R.G.; Zacharowski, K.; Kellum, J.A. Discovery and validation of cell cycle arrest biomarkers in human acute kidney injury. Crit. Care, 2013, 17(1), R25.
[http://dx.doi.org/10.1186/cc12503] [PMID: 23388612]
[19]
Su, L.J.; Li, Y.M.; Kellum, J.A.; Peng, Z.Y. Predictive value of cell cycle arrest biomarkers for cardiac surgery-associated acute kidney injury: A meta-analysis. Br. J. Anaesth., 2018, 121(2), 350-357.
[http://dx.doi.org/10.1016/j.bja.2018.02.069] [PMID: 30032873]
[20]
Price, P.M.; Yu, F.; Kaldis, P.; Aleem, E.; Nowak, G.; Safirstein, R.L.; Megyesi, J. Dependence of cisplatin-induced cell death in vitro and in vivo on cyclin-dependent kinase 2. J. Am. Soc. Nephrol., 2006, 17(9), 2434-2442.
[http://dx.doi.org/10.1681/ASN.2006020162] [PMID: 16914540]
[21]
Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F., III; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; Coresh, J.; Ckd, E.P.I. A new equation to estimate glomerular filtration rate. Ann. Intern. Med., 2009, 150(9), 604-612.
[http://dx.doi.org/10.7326/0003-4819-150-9-200905050-00006] [PMID: 19414839]
[22]
Kidney Disease: Improving Global Outcomes (KDIGO) acute kidney injury work group. KDIGO clinical practice guideline for acute kidney injury. Kidney Int. Suppl., 2012, 2, 1-138.
[23]
Nicolau, D.P.; Freeman, C.D.; Belliveau, P.P.; Nightingale, C.H.; Ross, J.W.; Quintiliani, R. Experience with a once-daily aminoglycoside pro-gram administered to 2,184 adult patients. Antimicrob. Agents Chemother., 1995, 39(3), 650-655.
[http://dx.doi.org/10.1128/AAC.39.3.650] [PMID: 7793867]
[24]
Liu, C.; Lu, X.; Mao, Z.; Kang, H.; Liu, H.; Pan, L.; Hu, J.; Wang, L.; Zhou, F. The diagnostic accuracy of urinary [TIMP-2]·[IGFBP7] for acute kidney injury in adults: A PRISMA-compliant meta-analysis. Medicine (Baltimore), 2017, 96(27)e7484
[http://dx.doi.org/10.1097/MD.0000000000007484] [PMID: 28682920]
[25]
Ong, L.Z.; Tambyah, P.A.; Lum, L.H.; Low, Z.J.; Cheng, I.; Murali, T.M.; Wan, M.Q.; Chua, H.R. Aminoglycoside-associated acute kidney injury in elderly patients with and without shock. J. Antimicrob. Chemother., 2016, 71(11), 3250-3257.
[http://dx.doi.org/10.1093/jac/dkw296] [PMID: 27494924]
[26]
Pavkovic, M.; Riefke, B.; Gutberlet, K.; Raschke, M.; Ellinger-Ziegelbauer, H. Comparison of the mesoscale discovery and luminex multiplex platforms for measurement of urinary biomarkers in a cisplatin rat kidney injury model. J. Pharmacol. Toxicol. Methods, 2014, 69(2), 196-204.
[http://dx.doi.org/10.1016/j.vascn.2013.11.003] [PMID: 24333954]
[27]
Luo, Q.H.; Chen, M.L.; Chen, Z.L.; Huang, C.; Cheng, A.C.; Fang, J.; Tang, L.; Geng, Y. Evaluation of KIM-1 and NGAL as early indicators for assessment of gentamycin-induced nephrotoxicity in vivo and in vitro. Kidney Blood Press. Res., 2016, 41(6), 911-918.
[http://dx.doi.org/10.1159/000452592] [PMID: 27889773]
[28]
DiRocco, D.P.; Bisi, J.; Roberts, P.; Strum, J.; Wong, K.K.; Sharpless, N.; Humphreys, B.D. CDK4/6 inhibition induces epithelial cell cycle arrest and ameliorates acute kidney injury. Am. J. Physiol. Renal Physiol., 2014, 306(4), F379-F388.
[http://dx.doi.org/10.1152/ajprenal.00475.2013] [PMID: 24338822]
[29]
Pabla, N.; Gibson, A.A.; Buege, M.; Ong, S.S.; Li, L.; Hu, S.; Du, G.; Sprowl, J.A.; Vasilyeva, A.; Janke, L.J.; Schlatter, E.; Chen, T.; Ciarim-boli, G.; Sparreboom, A. Mitigation of acute kidney injury by cell-cycle inhibitors that suppress both CDK4/6 and OCT2 functions. Proc. Natl. Acad. Sci. USA, 2015, 112(16), 5231-5236.
[http://dx.doi.org/10.1073/pnas.1424313112] [PMID: 25848011]
[30]
Hoste, E.A.; McCullough, P.A.; Kashani, K.; Chawla, L.S.; Joannidis, M.; Shaw, A.D.; Feldkamp, T.; Uettwiller-Geiger, D.L.; McCarthy, P.; Shi, J.; Walker, M.G.; Kellum, J.A.; Sapphire, I. Derivation and validation of cutoffs for clinical use of cell cycle arrest biomarkers. Nephrol. Dial. Transplant., 2014, 29(11), 2054-2061.
[http://dx.doi.org/10.1093/ndt/gfu292] [PMID: 25237065]
[31]
Bihorac, A.; Chawla, L.S.; Shaw, A.D.; Al-Khafaji, A.; Davison, D.L.; Demuth, G.E.; Fitzgerald, R.; Gong, M.N.; Graham, D.D.; Gunnerson, K.; Heung, M.; Jortani, S.; Kleerup, E.; Koyner, J.L.; Krell, K.; Letourneau, J.; Lissauer, M.; Miner, J.; Nguyen, H.B.; Ortega, L.M.; Self, W.H.; Sellman, R.; Shi, J.; Straseski, J.; Szalados, J.E.; Wilber, S.T.; Walker, M.G.; Wilson, J.; Wunderink, R.; Zimmerman, J.; Kellum, J.A. Validation of cell-cycle arrest biomarkers for acute kidney injury using clinical adjudication. Am. J. Respir. Crit. Care Med., 2014, 189(8), 932-939.
[http://dx.doi.org/10.1164/rccm.201401-0077OC] [PMID: 24559465]
[32]
Toprak, Z.; Cebeci, E.; Helvaci, S.A.; Toprak, I.D.; Kutlu, Y.; Sakin, A.; Tukek, T. Cisplatin nephrotoxicity is not detected by urinary cell-cycle arrest biomarkers in lung cancer patients. Int. Urol. Nephrol., 2017, 49(6), 1041-1047.
[http://dx.doi.org/10.1007/s11255-017-1556-4] [PMID: 28255639]
[33]
Schanz, M.; Hoferer, A.; Shi, J.; Alscher, M.D.; Kimmel, M. Urinary TIMP2-IGFBP7 for the prediction of platinum-induced acute renal injury. Int. J. Nephrol. Renovasc. Dis., 2017, 10, 175-181.
[http://dx.doi.org/10.2147/IJNRD.S135271] [PMID: 28721084]
[34]
van Hal, S.J.; Paterson, D.L.; Lodise, T.P. Systematic review and meta-analysis of vancomycin-induced nephrotoxicity associated with dos-ing schedules that maintain troughs between 15 and 20 milligrams per liter. Antimicrob. Agents Chemother., 2013, 57(2), 734-744.
[http://dx.doi.org/10.1128/AAC.01568-12] [PMID: 23165462]
[35]
Chindarkar, N.S.; Chawla, L.S.; Straseski, J.A.; Jortani, S.A.; Uettwiller-Geiger, D.; Orr, R.R.; Kellum, J.A.; Fitzgerald, R.L. Reference inter-vals of urinary acute kidney injury (AKI) markers [IGFBP7]-[TIMP2] in apparently healthy subjects and chronic comorbid subjects without AKI. Clin. Chim. Acta, 2016, 452, 32-37.
[http://dx.doi.org/10.1016/j.cca.2015.10.029] [PMID: 26522657]
[36]
Waikar, S.S.; Sabbisetti, V.S.; Bonventre, J.V. Normalization of urinary biomarkers to creatinine during changes in glomerular filtration rate. Kidney Int., 2010, 78(5), 486-494.
[http://dx.doi.org/10.1038/ki.2010.165] [PMID: 20555318]
[37]
Tang, K.W.; Toh, Q.C.; Teo, B.W. Normalisation of urinary biomarkers to creatinine for clinical practice and research--when and why. Singapore Med. J., 2015, 56(1), 7-10.
[http://dx.doi.org/10.11622/smedj.2015003] [PMID: 25640093]
[38]
Ralib, A.M.; Pickering, J.W.; Shaw, G.M.; Devarajan, P.; Edelstein, C.L.; Bonventre, J.V.; Endre, Z.H. Test characteristics of urinary bi-omarkers depend on quantitation method in acute kidney injury. J. Am. Soc. Nephrol., 2012, 23(2), 322-333.
[http://dx.doi.org/10.1681/ASN.2011040325] [PMID: 22095948]
[39]
Goldstein, S.L.; Mottes, T.; Simpson, K.; Barclay, C.; Muething, S.; Haslam, D.B.; Kirkendall, E.S. A sustained quality improvement program reduces nephrotoxic medication-associated acute kidney injury. Kidney Int., 2016, 90(1), 212-221.
[http://dx.doi.org/10.1016/j.kint.2016.03.031] [PMID: 27217196]
[40]
Bujang, M.A.; Adnan, T.H. Requirements for minimum sample size for sensitivity and specificity analysis. J. Clin. Diagn. Res., 2016, 10(10), YE01-YE06.
[http://dx.doi.org/10.7860/JCDR/2016/18129.8744] [PMID: 27891446]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy